• Ordovician;
  • Precordillera;
  • graptolites;
  • provenance;
  • isotopes;
  • zircon


Graptolite-bearing Middle and Upper Ordovician siliciclastic facies of the Argentine Precordillera fold-thrust belt record the disintegration of a long-lived Cambro-Mid Ordovician carbonate platform into a series of tectonically partitioned basins. A combination of stratigraphic, petrographic, U-Pb detrital zircon, and Nd-Pb whole-rock isotopic data provide evidence for a variety of clastic sediment sources. Four Upper Ordovician quartzo-lithic sandstones collected in the eastern and central Precordillera yield complex U-Pb zircon age spectra dominated by 1·05–1·10 Ga zircons, secondary populations of 1·22, 1·30, and 1·46 Ga, rare 2·2 and 1·8 Ga zircons, and a minor population (<2%) of concordant zircons in the 600–700 Ma range. Archaean-age grains comprise <1% of all zircons analysed from these rocks. In contrast, a feldspathic arenite from the Middle Ordovician Estancia San Isidro Formation of the central Precordillera has two well-defined peaks at 1·41 and 1·43 Ga, with no grains in the 600–1200 Ma range and none older than 1·70 Ga. The zircon age spectrum in this unit is similar to that of a Middle Cambrian quartz arenite from the La Laja Formation, suggesting that local basement rocks were a regional source of ca 1·4 Ga detrital zircons in the Precordillera Terrane from the Cambrian onwards. The lack of grains younger than 600 Ma in Upper Ordovician units reinforces petrographic data indicating that Ordovician volcanic arc sources did not supply significant material directly to these sedimentary basins. Nd isotopic data (n = 32) for Middle and Upper Ordovician graptolitic shales from six localities define a poorly mixed signal [ɛNd(450 Ma) = −9·6 to −4·5] that becomes more regionally homogenized in Upper Ordovician rocks (−6·2 ± 1·0; TDM = 1·51 ± 0·15 Ga; n = 17), a trend reinforced by the U-Pb detrital zircon data. It is concluded that proximal, recycled orogenic sources dominated the siliciclastic sediment supply for these basins, consistent with rapid unroofing of the Precordillera Terrane platform succession and basement starting in Mid Ordovician time. Common Pb data for Middle and Upper Ordovician shales from the western and eastern Precordillera (n = 15) provide evidence for a minor (<30%) component that was likely derived from a high-μ (U/Pb) terrane.