Microbially mediated carbonates in the Holocene deposits from Sarliève, a small ancient lake of the French Massif Central, testify to the evolution of a restricted environment



Both the mineralogy and facies of lacustrine bio-induced carbonates are controlled largely by hydrological factors that are highly dependent upon climatic influence. As such they are useful tools in characterizing ancient lake environments. In this way, the study of the sedimentary record from the small ancient Sarliève Lake (Limagne, Massif Central, France) aims to reconstruct the hydrological evolution during the Holocene, using petrographical, mineralogical and geochemical analyses. The fine-grained marls, mainly calcitic, display numerous layers rich in pristine Ca-dolomite, with small amounts of aragonite, which are clearly autochthonous. As these minerals are rather unusual in the temperate climatic context of western Europe, the question arises about their forming conditions, and therefore that of the lacustrine environment. Ca-dolomite prevails at the base of the sequence as a massive dolomicrite layer and, in the middle part, it builds up most of the numerous laminae closely associated with organic matter. Scanning electron microscope observations reveal the abundance of tiny crystals (tens to hundreds of nanometres) mainly organized as microspheres looking like cocci or bacilli. Such a facies is interpreted as resulting from the fossilization of benthic microbial communities by dolomite precipitation following organic matter consumption and extracellular polymeric substance degradation. These microbial dolomites were precipitated in a saline environment, as a consequence of excess evaporation from the system, as is also suggested by their positive ∂18O values. The facies sequence expresses the following evolution: (i) saline pan, i.e. endorheic stage with a perennial lowstand in lake level (Boreal to early Atlantic periods); (ii) large fluctuations in lake level with sporadic freshening of the system (Atlantic); (iii) open lake stage (sub-boreal); and (iv) anthropogenic drainage (sub-Atlantic).