Get access

Complex variations in sediment transport at three large river bifurcations during discharge waves in the river Rhine



River bifurcations strongly control the distribution of water and sediment over a river system. A good understanding of this distribution process is crucial for river management. In this paper, an extensive data set from three large bifurcations in the Dutch Rhine is presented, containing data on bed-load transport, suspended bed sediment transport, dune development and hydrodynamics. The data show complex variations in sediment transport during discharge waves. The objective of this paper is to examine and explain these measured variations in sediment transport. It is found that bend sorting upstream of the bifurcations leads to supply limitation, particularly in the downstream branch that originates in the outer bend of the main channel. Tidal water level variations lead to cyclical variations in the sediment distribution over the downstream branches. Lags in dune development cause complex hysteresis patterns in flow parameters and sediment transport. All bifurcations show evidence of sediment waves, which probably are intrinsic bifurcation phenomena. The complex transport processes at the three bifurcations cause distinct discontinuities in the downstream fining trend of the river. Differences among the studied river bifurcations are mainly due to differences in sediment mobility (Shields value). Because the variations in sediment transport are complex and poorly correlated with the flow discharge, prediction of the sediment distribution with existing relationships for one-dimensional models is problematic.