SEARCH

SEARCH BY CITATION

Keywords:

  • Environmental magnetism;
  • granulometry;
  • loess;
  • magnetic grain-size;
  • pedogenesis;
  • weathering

Abstract

Using a combination of particle size analysis, magnetic measurements, scanning electron microscopy and transmission electron microscopy imaging, this study shows that in a wide range of depositional environments, there is a strong link between particle size classes and magnetic response, especially below the upper limit of stable single domain magnetic behaviour. Ferrimagnetic grain assemblages dominated by stable single domain magnetosomes regularly have peak susceptibility and remanence values in coarser grades than do those containing finer-grained, viscous and superparamagnetic secondary magnetic minerals formed during pedogenesis. This effect is despite the fact that there is a one to two orders of magnitude size difference between the particle size boundaries (at 1 or 2 μm) and key domain state transitions (mostly below 0·05 μm). The implications of these results are explored using samples spanning 22 Myr of loess accumulation on the Chinese Loess Plateau. The results from the loess sections, complemented by data from low-temperature magnetic experiments, show that there are subtle distinctions in mean ferrimagnetic grain-size between the Pleistocene and Miocene parts of the record, thus allowing more refined rock magnetic interpretations of the fine-grained ferrimagnetic mineral assemblages arising from the effects of weathering, pedogenesis and possibly diagenesis in the sections studied.