Get access

Braided rivers within an arid alluvial plain (example from the Lower Triassic, western German Basin): recognition criteria and expression of stratigraphic cycles

Authors


Abstract

Based on a detailed sedimentological analysis of Lower Triassic continental deposits in the western Germanic sag Basin (i.e. the eastern part of the present-day Paris Basin: the ‘Conglomérat basal’, ‘Grès vosgien’ and ‘Conglomérat principal’ Formations), three main depositional environments were identified: (i) braided rivers in an arid alluvial plain with some preserved aeolian dunes and very few floodplain deposits; (ii) marginal erg (i.e. braided rivers, aeolian dunes and aeolian sand-sheets); and (iii) playa lake (an ephemeral lake environment with fluvial and aeolian sediments). Most of the time, aeolian deposits in arid environments that are dominated by fluvial systems are poorly preserved and particular attention should be paid to any sedimentological marker of aridity, such as wind-worn pebbles (ventifacts), sand-drift surfaces and aeolian sand-sheets. In such arid continental environments, stratigraphic surfaces of allocyclic origin correspond to bounding surfaces of regional extension. Elementary stratigraphic cycles, i.e. the genetic units, have been identified for the three main continental environments: the fluvial type, fluvial–aeolian type and fluvial/playa lake type. At the time scale of tens to hundreds of thousands of years, these high-frequency cycles of climatic origin are controlled either by the groundwater level in the basin or by the fluvial siliciclastic sediment input supplied from the highland. Lower Triassic deposits from the Germanic Basin are preserved mostly in endoreic basins. The central part of the basin is arid but the rivers are supplied with water by precipitation falling on the remnants of the Hercynian (Variscan)–Appalachian Mountains. Consequently, a detailed study of alluvial plain facies provides indications of local climatic conditions in the place of deposition, whereas fluvial systems only reflect climatic conditions of the upstream erosional catchments.

Ancillary