SEARCH

SEARCH BY CITATION

Keywords:

  • Iberian Range;
  • Piedra and Mesa rivers;
  • quaternary tufas;
  • river slope changes;
  • sedimentary facies model;
  • Spain

Abstract

Stratigraphic and sedimentological analyses of the Quaternary tufa and associated deposits in the Piedra and Mesa river valleys allowed a number of stages of their sedimentary evolution to be characterized, and a depositional sedimentary model for this north-central sector of the Iberian Range (Spain) to be established. The proposed sedimentary facies model may explain tufa arrangements in other medium to high gradient, stepped, fluvial tufa systems with narrow transverse profiles occurring in temperate, semi-arid areas, in both recent and past scenarios. There are several tufa deposits within the Piedra and Mesa river valleys that, over a maximum thickness of about 90 m, record one or more stages of tufa deposition produced following the fluvial incision of the bedrock or previous tufa deposits. Each depositional stage begins with coarse detrital sedimentation. Six fundamental, vertical sequences of tufa facies with small amounts of detrital material reveal the sedimentary processes that occurred in different fluvial environments: channel areas with: (i) free-flowing water; (ii) barrages and/or cascades; and (iii) dammed water and palustrine floodplains. The proposed sedimentary model involves narrow, stepped, fluvial valleys in which tufa cascades were common. Alternating intervals of bryophyte and stromatolite facies commonly formed at some cascades. Many of these represented barrage-cascade structures that consisted of phytoclast rudstones, thick phytoherms of mosses and associated stromatolites, and curtain-shaped phytoherms of stems. Upstream of these structures, dammed areas with bioclastic sands and silts developed and palustrine vegetation grew. The channel stretches between barrages and/or cascades were loci for extensive stromatolite growth in fast flowing water. The palustrine floodplain was home to pools and drainage channels. The model also explains the growth of some barrages in the River Piedra that surpassed the height of the divide, with the diffluence of the main channel into a secondary course forming other tufa deposits in the area. The distribution and abundance of certain types of tufa facies in fluvial basins may be an indicator of differences in their gradients. The facies studied in this work suggest that the gradient of the ancient River Piedra was steeper than that of the ancient River Mesa. Assuming similar scenarios for climate and hydrology, the depositional settings mentioned above and their dimensions would have been determined mainly by the gradient and width of the associated river valleys. This sedimentary model may also be useful for inferring variations in other river basin slopes, as well as accounting for the presence of tufas in areas that normally have no permanent water input.