SEARCH

SEARCH BY CITATION

ABSTRACT

The 1968 Belice earthquake sequence, characterized by six main shocks with 5 < M < 5.4, represents the strongest seismic event recorded in western Sicily in historical times. The epicentral area is located in the Belice Valley, a region lacking any topographic lineament likely to result from a fault with significant offsets of any kind. Instrumental data show that hypocentres of the major shocks are distributed along a roughly N-dipping plane extending from about 36 km to 1 km depth. Fault plane solutions show pure thrusting mechanisms on N-dipping, ENE-trending planes, or oblique slip with a right-lateral component of motion along steep WSW-dipping planes, both as a result of approximate N-S shortening. The observed destruction indicates that isoseismal areas are elongated in an ENE direction. Similarly, the epiccntral distribution of events with M ≥ 4 outlines a roughly elliptical ENE-elongated area located 20 km NW of the Sciacca-Rocca Ficuzza thrust front. This ENE-striking structure, representing the regional morphotectonic feature closest to the epicentral area, consists of two main imbricate fan systems. In the southernmost system, Quaternary deposits (tentatively dated as 1.0–0.7 Myr old) are involved in a large ramp anticline uplifting them to a maximum altitude of 346 m. The occurrence of Holocene lacustrine piggy-back basins on the rear of this structure also indicates late Quaternary activity of the underlying thrust. Seismological, structural and morphotectonic observations suggest that multiple ruptures might have occurred during the 1968 sequence on a blind crustal thrust ramp located beneath the epicentral area. Slip propagated southwards along the shallow ramp-flat system characterizing the thin-skinned foreland fold and thrust belt of southwestern Sicily, being dispersed in flexural folding processes and diffuse strain along this path.