A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling


For correspondence (fax +1 515 294 9420; e-mail rpwise@iastate.edu).


Interactions between barley and the powdery mildew pathogen, Blumeria graminis f. sp. hordei, (Bgh) are determined by unique combinations of host resistance genes, designated Mildew-resistance locus (Ml), and cognate pathogen avirulence genes. These interactions occur both dependent and independent of Rar1 (required for Mla12 resistance) and Sgt1 (Suppressor of G-two allele of skp1), which are differentially required for diverse plant disease-resistance pathways. We have isolated two new functional Mla alleles, Rar1-independent Mla7 and Rar1-dependent Mla10, as well as the Mla paralogs, Mla6-2 and Mla13-2. Utilizing the inherent diversity amongst Mla-encoded proteins, we identified the only two amino acids exclusively conserved in RAR1-dependent MLA6, MLA10, MLA12, and MLA13 that differ at the corresponding position in RAR1-independent MLA1 and MLA7. Two- and three-dimensional modeling places these residues on a predicted surface of the sixth leucine-rich repeat (LRR) domain at positions distinct from those within the β-sheets hypothesized to determine resistance specificity. Site-directed mutagenesis of these residues indicates that RAR1 independence requires the presence of an aspartate at position 721, as mutation of this residue to a structurally similar, but uncharged, asparagine did not alter RAR1 dependence. These results demonstrate that a single-amino acid substitution in the sixth MLA LRR can alter host signaling but not resistance specificity to B. graminis.