SEARCH

SEARCH BY CITATION

References

  • Becher, M., Talke, I.N., Krall, L. and Kramer, U. (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J. 37, 261268.
  • Benes, I., Schreiber, K., Ripperger, H. and Kircheiss, A. (1983) Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia, 39, 261262.
  • Clemens, S., Palmgren, M.G. and Krämer, U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7, 309315.
  • Curie, C., Panavience, Z., Loulergue, C., Dellaporta, S.L., Briat, J.F. and Walker, E.L. (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature, 409, 346349.
  • Eide, D., Broderuis, M., Fett, J. and Guerinot, M.L. (1996) A novel iron regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl Acad. Sci. USA, 93, 56245628.
  • Finney, L. and O'Halloran, T.V. (2003) Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science, 300, 931936.
  • Grusak, M.A. and Dellapenna, D. (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu. Rev. Plant Physiol. Plant Mol Biol. 50, 133161.
  • Guerinot, M.L. (2001) Improving rice yields-ironing out the details. Nat. Biotechnol. 19, 417418.
  • Herbik, A., Koch, G., Mock, H.P., Dushkov, M., Czihal, A., Thielmann, J., Stephan, U.W. and Bäumlein, H. (1999) Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. Eur. J. Biochem. 265, 231239.
  • Higuchi, K., Nishizawa, N., Römheld, V., Marschner, H. and Mori, S. (1996) Absence of nicotianamine synthase activity in the tomato mutant ‘chloronerva. J. Plant Nutr. 19, 1231239.
  • Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N.K. and Mori, S. (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 119, 471479.
  • Higuchi, K., Watanabe, S., Takahashi, M., Kawasaki, S., Nakanishi, H., Nishizawa, N.K. and Mori, S. (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J. 25, 159167.
  • Hirokawa, T., Boon-Chieng, S. and Mitaku, S. (1998) SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics, 14, 378379.
  • Igarashi, Y., Yoshiba, Y., Takeshita, T., Nomura, S., Otomo, J., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2000) Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol. 41, 750756.
  • Inoue, H., Higuchi, K., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2 and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J. 36, 366381.
  • Krüger, C., Berkowitz, O., Stephan, U.W. and Hell, R. (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J. Biol. Chem. 277, 2506225069.
  • Ling, H.Q., Koch, G., Bäumlein, H. and Ganal, M.W. (1999) Map based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine syntheses. Proc. Natl Acad. Sci. USA, 96, 70987103.
  • Marschner, H., Römheld, V. and Kissel, M. (1986) Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9, 695713.
  • Mizuno, D., Higuchi, K., Sakamoto, T., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol. 132, 19891997.
  • Mori, S. (1999) Iron acquisition by plants. Curr. Opin. Plant Biol. 2, 250253.
  • Mori, S. and Nishizawa, N. (1987) Methionine as a dominant precursor of phytosiderophores in Graminaceae: plants. Plant Cell Physiol. 28, 10811092.
  • Mori, S., Nishizawa, N., Hayashi, H., Chino, M., Yoshimura, E. and Ishihara, J. (1991) Why are young rice plants highly susceptible to iron deficiency? Pant Soil, 130, 143156.
  • Nakazono, M., Qiu, F., Borsuk, L. and Schnable, P.S. (2003) Laser capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell, 15, 583596.
  • Noma, M. and Noguchi, M. (1976) Occurrence of nicotianamine in higher plants. Phytochemistry, 15, 17011702.
  • Noma, M., Noguchi, M. and Tamaki, E. (1971) A new amino acid, nicotianamine, from tobacco leaves. Tetrahedron Lett. 22, 20172020.
  • Pich, A. and Scholz, G. (1996). Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem. J. Exp. Bot. 294, 4147.
  • Robinson, N.J., Procter, C.M., Connolly, E.L. and Guerinot, M.L. (1999) A ferric-chelate reductase for iron uptake from soils. Nature, 397, 694697.
  • Rudolph, A., Becker, R., Scholz, G., Procházka, Z., Toman, J., Macek, T. and Herout, V. (1985). The occurrence of the amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochem. Physiol. Pflanz. 180, 557563.
  • Schaaf, G., Ludewig, U., Erenoglu, B.E., Mori, S., Kitahara, T. and von Wirén, N. (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J. Biol. Chem. 279, 90919096.
  • Shojima, S., Nishizawa, N.K. and Mori, S. (1989) Establishment of a cell-free system for the biosynthesis of nicotianamine. Plant Cell Physiol. 30, 673677.
  • Shojima, S., Nishizawa, N.K., Fushiya, S., Nozoe, S., Irifune, T. and Mori, S. (1990) Biosynthesis of phytosiderophores. Plant Physiol. 93, 14971503.
  • Stephan, U.W., Schmidke, I. and Pich, A. (1994) Phloem translocation of Fe, Cu, Mn, and Zn in ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal-ions, in different seedling parts. Plant Soil, 165, 181188.
  • Stephan, U.W., Schmidke, I., Stephan, V.W. and Scholz, G. (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals, 9, 8490.
  • Suzuki, K., Higuchi, K., Nakanishi, H., Nishizawa, N.K. and Mori, S. (1999) Cloning of nicotianamine synthase genes from Arabidopsis thaliana. Soil Sci. Plant Nutr. 45, 991002.
  • Takagi, S. (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washings. Soil Sci. Plant Nutr. 22, 423433.
  • Takagi, S., Nomoto, K. and Takemoto, T. (1984). Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7, 469477.
  • Takahashi, M., Yamaguchi, H., Nakanishi, H., Shioiri, T., Nishizawa, N.K. and Mori, S. (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol. 121, 947956.
  • Takahashi, M., Nakanishi, H., Kawasaki, S., Nishizawa, N.K. and Mori, S. (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat. Biotechnol. 19, 466469.
  • Takahashi, M., Terada, Y., Nakai, I., Nakanishi, H., Yoshimura, E., Mori, S. and Nishizawa, N.K. (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 15, 12631280.
  • Walker, E.L. (2002) Functional analysis of the Arabidopsis yellow stripe-like (YSL) family. Heavy metal transport and partitioning via metal-nicotianamine (NA) complexes. Plant Physiol. 129, 431432.
  • Weber, M., Harada, E., Vess, C., Roepenack-Lahaye, E. and Clemens, S. (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J. 37, 269281.
  • von Wirén, N., Mori, S., Marchner, H. and Romheld, V. (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv. yellow-stripe) is caused by a defect in uptake if iron phytosiderophores. Plant Physiol. 106, 7177.
  • von Wirén, N., Klair, S., Bansal, S., Briat, J.F., Khodr, H., Shioiri, T., Leigh, R.A. and Hider, R.C. (1999) Nicotianamine chelates both FeIII and FeII.Implications for metal transport in plants. Plant Physiol. 119, 11071114.
  • WHO (2003) http://www.who.int/nut/ida.htm .
  • Yen, M.-R., Tseng, Y.-H. and Saier, M.H. Jr. (2001) Maize yellow stripe1, an iron-phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. Microbiology, 147, 28812883.