SEARCH

SEARCH BY CITATION

References

  • Andresen, B.T., Rizzo, M.A., Shome, K. and Romero, G. (2002) The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signaling cascade. FEBS Lett. 531, 6568.
  • Anthony, R.G., Henriques, R., Helfer, A., Meszaros, T., Rios, G., Testerink, C., Munnik, T., Deak, M., Koncz, C. and Bogre, L. (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J. 23, 572581.
  • Arisz, S.A., Valianpour, F., van Gennip, A.H. and Munnik, T. (2003) Substrate preference of stress-activated phospholipase D in Chlamydomonas and its contribution to PA formation. Plant J. 34, 595604.
  • Baillie, G.S., Huston, E., Scotland, G. et al. (2002) TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J. Biol. Chem. 277, 2829828309.
  • Chollet, R., Vidal, J. and O'Leary, M.H. (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47, 273298.
  • Coursol, S., Giglioli-Guivarc'h, N. , Vidal, J. and Pierre, J.N. (2000) An increase in phosphoinositide-specific phospholipase C activity precedes induction of C4 phosphoenolpyruvate carboxylase phosphorylation in illuminated and NH4Cl-treated protoplasts from Digitaria sanguinalis. Plant J. 23, 497506.
  • Deak, M., Casamayor, A., Currie, R.A., Downes, C.P. and Alessi, D.R. (1999) Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain. FEBS Lett. 451, 220226.
  • Den Hartog, M., Musgrave, A. and Munnik, T. (2001) Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J. 25, 5566.
  • Den Hartog, M., Verhoef, N. and Munnik, T. (2003) Nod factor and elicitors activate different phospholipid signaling pathways in suspension-cultured alfalfa cells. Plant Physiol. 132, 311317.
  • DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D. and Hama, H. (2001) Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 126, 759769.
  • Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W.J. and Munnik, T. (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell, 15, 26662679.
  • Drøbak, B.K. and Watkins, P.A. (2000) Inositol(1,4,5)trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett. 481, 240244.
  • Etheridge, N., Trusov, Y., Verbelen, J.P. and Botella, J.R. (1999) Characterization of ATDRG1, a member of a new class of GTP-binding proteins in plants. Plant Mol. Biol. 39, 11131126.
  • Fan, L., Zheng, S. and Wang, X. (1997) Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell, 9, 21832196.
  • Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. and Chen, J. (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science, 294, 19421945.
  • Farmer, P.K. and Choi, J.H. (1999) Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.). Biochim. Biophys. Acta, 1434, 617.
  • Frank, C., Keilhack, H., Opitz, F., Zschornig, O. and Bohmer, F.D. (1999) Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation. Biochemistry, 38, 1199312002.
  • Frank, W., Munnik, T., Kerkmann, K., Salamini, F. and Bartels, D. (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell, 12, 111124.
  • Garbers, C., DeLong, A., Deruere, J., Bernasconi, P. and Soll, D. (1996) A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 15, 21152124.
  • Garcia-Maurino, S., Monreal, J.A., Alvarez, R., Vidal, J. and Echevarria, C. (2003) Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta, 216, 648655.
  • Gardiner, J.C., Harper, J.D., Weerakoon, N.D., Collings, D.A., Ritchie, S., Gilroy, S., Cyr, R.J. and Marc, J. (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell, 13, 21432158.
  • Ghosh, S., Strum, J.C., Sciorra, V.A., Daniel, L. and Bell, R.M. (1996) Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J. Biol. Chem. 271, 84728480.
  • Gonzalez, M.C., Sanchez, R. and Cejudo, F.J. (2003) Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 216, 985992.
  • Grange, M., Sette, C., Cuomo, M., Conti, M., Lagarde, M., Prigent, A.F. and Nemoz, G. (2000) The cAMP-specific phosphodiesterase PDE4D3 Is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J. Biol. Chem. 275, 3337933387.
  • Hrabak, E.M., Chan, C.W., Gribskov, M. et al. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666680.
  • Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K. and Dangl, J.L. (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22, 56795689.
  • Jacob, T., Ritchie, S., Assmann, S.M. and Gilroy, S. (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc. Natl Acad. Sci. USA, 96, 1219212197.
  • Jenkins, G.H., Fisette, P.L. and Anderson, R.A. (1994) Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J. Biol. Chem. 269, 1154711554.
  • Jones, J.A. and Hannun, Y.A. (2002) Tight binding inhibition of protein phosphatase-1 by phosphatidic acid. Specificity of inhibition by the phospholipid. J. Biol. Chem. 277, 1553015538.
  • de Jong, C.F., Laxalt, A.M., Bargmann, B.O.R., De Wit, P.J.G.M., Joosten, M.H.A.J. and Munnik, T. (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J. in press.
  • Katagiri, T., Takahashi, S. and Shinozaki, K. (2001) Involvement of a novel Arabidopsis phospholipase D, AtPLDdelta, in dehydration-inducible accumulation of phosphatidic acid in stress signalling. Plant J. 26, 595605.
  • Knight, H. and Knight, M.R. (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6, 262267.
  • Koornneef, M., Hanhart, C. and Martinelli, L. (1987) A genetic analysis of cell culture traits in tomato. Theor. Appl. Genet. 74, 633641.
  • Ktistakis, N.T., Delon, C., Manifava, M., Wood, E., Ganley, I. and Sugars, J.M. (2003) Phospholipase D1 and potential targets of its hydrolysis product, phosphatidic acid. Biochem. Soc. Trans. 31, 9497.
  • Kwak, J.M., Moon, J.H., Murata, Y., Kuchitsu, K., Leonhardt, N., DeLong, A. and Schroeder, J.I. (2002) Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell, 14, 28492861.
  • Larsen, P.B. and Cancel, J.D. (2003) Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. Plant J. 34, 709718.
  • Laxalt, A.M., ter Riet, B., Verdonk, J.C., Parigi, L., Tameling, W.I., Vossen, J., Haring, M., Musgrave, A. and Munnik, T. (2001) Characterization of five tomato phospholipase D cDNAs: rapid and specific expression of LePLDbeta1 on elicitation with xylanase. Plant J. 26, 237247.
  • Lee, S., Suh, S., Kim, S., Crain, R.C., Kwak, J.M., Nam, H.-G. and Lee, Y. (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J. 12, 547556.
  • Lee, S., Hirt, H. and Lee, Y. (2001) Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J. 26, 479486.
  • Lee, S., Park, J. and Lee, Y. (2003) Phosphatidic acid induces actin polymerization by activating protein kinases in soybean cells. Mol. Cells, 15, 313319.
  • Lim, Z.-Y., Thuring, J.W., Holmes, A.B., Manifava, M. and Ktistakis, N.T. (2002) Synthesis and biological evaluation of a PtdIns(4,5)P2 and a phosphatidic acid affinity matrix. J. Chem. Soc. Perkin. Trans. 1, 10671075.
  • Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J., Wu, A.J., Rathjen, J.P., Bendahmane, A., Day, L. and Baulcombe, D.C. (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 56905699.
  • Manifava, M., Thuring, J.W., Lim, Z.Y., Packman, L., Holmes, A.B. and Ktistakis, N.T. (2001) Differential binding of traffic-related proteins to phosphatidic acid- or phosphatidylinositol (4,5)-bisphosphate-coupled affinity reagents. J. Biol. Chem. 276, 89878994.
  • Meijer, H.J.G. and Munnik, T. (2003) Phospholipid-based signaling in plants. Annu. Rev. Plant Biol. 54, 265306.
  • Mikolajczyk, M., Awotunde, O.S., Muszynska, G., Klessig, D.F. and Dobrowolska, G. (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell, 12, 165178.
  • Monks, D.E., Aghoram, K., Courtney, P.D., DeWald, D.B. and Dewey, R.E. (2001) Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 13, 12051219.
  • Moraes, T.F. and Plaxton, W.C. (2000) Purification and characterization of phosphoenolpyruvate carboxylase from Brassica napus (rapeseed) suspension cell cultures: implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilation. Eur. J. Biochem. 267, 44654476.
  • Munnik, T. (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6, 227233.
  • Munnik, T. and Musgrave, A. (2001) Phospholipid signaling in plants: holding on to phospholipase D. Sci. STKE, 2001, PE42.
  • Munnik, T., Irvine, R.F. and Musgrave, A. (1998) Phospholipid signalling in plants. Biochim. Biophys. Acta, 1389, 222272.
  • Munnik, T., Meijer, H.J.G., ter Riet, B., Hirt, H., Frank, W., Bartels, D. and Musgrave, A. (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J. 22, 147154.
  • Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F. and Giraudat, J. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14, 30893099.
  • Nie, Z., Stanley, K.T., Stauffer, S., Jacques, K.M., Hirsch, D.S., Takei, J. and Randazzo, P.A. (2002) AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. J. Biol. Chem. 277, 4896548975.
  • Ouyang, Y.S., Tu, Y., Barker, S.A. and Yang, F. (2003) Regulators of G-protein signaling (RGS) 4, insertion into model membranes and inhibition of activity by phosphatidic acid. J. Biol. Chem. 278, 1111511122.
  • Palicz, A., Foubert, T.R., Jesaitis, A.J., Marodi, L. and McPhail, L.C. (2001) Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J. Biol. Chem. 276, 30903097.
  • Park, J., Gu, Y., Lee, Y. and Yang, Z. (2004) Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol. 134, 129136.
  • Potocky, M., Elias, M., Profotova, B., Novotna, Z., Valentova, O. and Zarsky, V.V. (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta, 217, 122130.
  • Regier, D.S., Greene, D.G., Sergeant, S., Jesaitis, A.J. and McPhail, L.C. (2000) Phosphorylation of p22phox is mediated by phospholipase D-dependent and -independent mechanisms. Correlation of NADPH oxidase activity and p22phox phosphorylation. J. Biol. Chem. 275, 2840628412.
  • Rentel, M.C., Lecourieux, D., Ouaked, F. et al. (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 427, 858861.
  • Ritchie, S. and Gilroy, S. (1998) Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity. Proc. Natl Acad. Sci. USA, 95, 26972702.
  • Rizzo, M. and Romero, G. (2002) Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol. Ther. 94, 3550.
  • Rizzo, M.A., Shome, K., Vasudevan, C., Stolz, D.B., Sung, T.C., Frohman, M.A., Watkins, S.C. and Romero, G. (1999) Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J. Biol. Chem. 274, 11311139.
  • Rizzo, M.A., Shome, K., Watkins, S.C. and Romero, G. (2000) The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J. Biol. Chem. 275, 2391123918.
  • Sang, Y., Cui, D. and Wang, X. (2001a) Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiol. 126, 14491458.
  • Sang, Y., Zheng, S., Li, W., Huang, B. and Wang, X. (2001b) Regulation of plant water loss by manipulating the expression of phospholipase D alpha. Plant J. 28, 135144.
  • Sehnke, P.C., DeLille, J.M. and Ferl, R.J. (2002) Consummating signal transduction: the role of 14–3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell, 14, S339S354.
  • Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850858.
  • Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2001) Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol. 42, 214222.
  • Testerink, C. and Munnik, T. (2004) Plant response to stress: phosphatidic acid as a second messenger. In Encyclopedia of Plant and Crop Science (Goodman, R.M., ed.). New York: Marcel Dekker, Inc., pp. 995998.
  • Van der Luit, A.H., Piatti, T., van Doorn, A., Musgrave, A., Felix, G., Boller, T. and Munnik, T. (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol. 123, 15071516.
  • Vidal, J. and Chollet, R. (1997) Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci. 2, 230237.
  • Wang, C., Zien, C.A., Afitlhile, M., Welti, R., Hildebrand, D.F. and Wang, X. (2000) Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell, 12, 22372246.
  • Yamaguchi, T., Minami, E. and Shibuya, N. (2003) Activation of phospholipases by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells mediates reactive oxygen generation. Physiol. Plant. 118, 361370.
  • Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J.R. and Shinozaki, K. (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43, 14731483.
  • Zonia, L. and Munnik, T. (2004) Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Plant Physiol. 134, 813823.