SEARCH

SEARCH BY CITATION

References

  • Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M. and Somerville, C.R. (1992) Map-based cloning of a gene controlling ω-3 fatty acid desaturase in Arabidopsis. Science, 258, 13531355.
  • Babior, B.M., Lambeth, J.D. and Nauseef, W. (2002) The neutrophil NADPH oxidase. Arch. Biochem. Biophys. 397, 342344.
  • Berberich, T., Harada, M., Sugawara, K., Kodama, H., Iba, K. and Kusano, T. (1998) Two maize genes encoding plastidic ω-3 fatty acid desaturase and their differential expression to temperature. Plant Mol. Biol. 36, 297306.
  • Bisgrove, S.R., Simonich, M.T., Smith, N.M., Sattler, A. and Innes, R.W. (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell, 6, 927933.
  • Boyes, D.C., Nam, J. and Dangl, J.L. (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc. Natl Acad. Sci. USA, 95, 1584915854.
  • Browse, J., McCourt, P. and Somerville, C. (1986) A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant Physiol. 81, 859864.
  • Browse, J., Somerville, C.R. and Slack, C.R. (1988) Changes in lipid composition during protoplast isolation. Plant Sci. 56, 1520.
  • Browse, J., McConn, M., James, D., Jr and Miquel, M. (1993) Mutants of Arabidopsis deficient in the synthesis of α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J. Biol. Chem. 268, 1634516351.
  • Croft, K.P.C., Jüttner, F. and Slusarenko, A.J. (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 101, 1324.
  • Dana, R., Leto, T.L., Malech, H.L. and Levy, R. (1998) Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J. Biol. Chem. 273, 441445.
  • Doke, N. (1983) Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol. Plant Pathol. 23, 359367.
  • Doussiere, J., Bouzidi, F., Poinas, A., Gaillard, J. and Vignais, P.V. (1999) Kinetic study of the activation of the neutrophil NADPH oxidase by arachidonic acid. Antagonistic effects of arachidonic acid and phenylarsine oxide. Biochemistry, 38, 1639416406.
  • Dyer, J.M. and Mullen, R.T. (2001) Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett. 494, 4447.
  • Froehlich, J.E., Wilkerson, C.G., Ray, W.K., McAndrew, R.S., Osteryoung, K.W., Gage, D.A. and Phinney, B.S. (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J. Proteome Res. 2, 413425.
  • Genoud, T., Buchala, A.J., Chua, N.H. and Métraux, J.P. (2002) Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J. 31, 8795.
  • Gibson, S., Arondel, V., Iba, K. and Somerville, C. (1994) Cloning of a temperature-regulated gene encoding a chloroplast ω-3 desaturase from Arabidopsis thaliana. Plant Physiol. 106, 16151621.
  • Grant, M.R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R.W. and Dangl, J.L. (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269, 843846.
  • Grant, J.J., Yun, B.W. and Loake, G.J. (2000) Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J. 24, 569582.
  • Hamada, T., Kodama, H., Takeshita, K., Utsumi, H. and Iba, K. (1998) Characterization of transgenic tobacco with an increased α-linolenic acid level. Plant Physiol. 118, 591598.
  • Henderson, L.M. and Chappell, J.B. (1996) NADPH oxidase of neutrophils. Biochim. Biophys. Acta, 1273, 87107.
  • Iba, K. (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53, 225245.
  • Iba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M., Arondel, V., Hugly, S. and Somerville, C. (1993) A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J. Biol. Chem. 268, 2409924105.
  • Jabs, T., Dietrich, R.A. and Dangl, J.L. (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 273, 18531856.
  • Kachroo, P., Shanklin, J., Shah, J., Whittle, E.J. and Klessig, D.F. (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl Acad. Sci. USA, 98, 94489453.
  • Kates, M. (1986) Techniques of Lipidology. Amsterdam, The Netherlands: Elsevier Science, p. 351.
  • Keller, T., Damude, H.G., Werner, D., Doerner, P., Dixon, R.A. and Lamb, C. (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell, 10, 255266.
  • Kirsch, C., Takamiya-Wik, M., Reinold, S., Hahlbrock, K. and Somssich, I.E. (1997) Rapid, transient, and highly localized induction of plastidial ω-3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum. Proc. Natl Acad. Sci. USA, 94, 20792084.
  • Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M. and Iba, K. (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco. Plant Physiol. 105, 601605.
  • Lamb, C. and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251275.
  • de León, I.P., Sanz, A., Hamberg, M. and Castresana, C. (2002) Involvement of the Arabidopsis α-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. Plant J. 29, 6172.
  • Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583593.
  • McConn, M., Hugly, S., Browse, J. and Somerville, C. (1994) A mutation at the fad8 locus of Arabidopsis identifies a second chloroplast ω-3 desaturase. Plant Physiol. 106, 16091614.
  • Mindrinos, M., Katagiri, F., Yu, G.L. and Ausubel, F.M. (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeat. Cell, 78, 10891099.
  • Miquel, M. and Browse, J. (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J. Biol. Chem. 267, 15021509.
  • Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H. and Iba, K. (2000) Trienoic fatty acids and plant tolerance of high temperature. Science, 287, 476479.
  • Nandi, A., Krothapalli, K., Buseman, C.M., Li, M., Welti, R., Enyedi, A. and Shah, J. (2003) Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell, 15, 23832398.
  • Nandi, A., Welti, R. and Shah, J. (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell, 16, 465477.
  • Nishiuchi, T., Hamada, T., Kodama, H. and Iba, K. (1997) Wounding changes the spatial expression pattern of the Arabidopsis plastid ω-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell, 9, 17011712.
  • Oppenheimer, D.G., Herman, P.L., Sivakumaran, S., Esch, J. and Marks, M.D. (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell, 67, 483493.
  • Orozco-Cardenas, M. and Ryan, C.A. (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl Acad. Sci. USA, 96, 65536557.
  • Rao, M.V., Koch, J.R. and Davis, K.R. (2000a ) Ozone: a tool for probing programmed cell death in plants. Plant Mol. Biol. 44, 345358.
  • Rao, M.V., Lee, H.I., Creelman, R.A., Mullet, J.E. and Davis, K.R. (2000b ) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell, 12, 16331646.
  • Rubinek, T. and Levy, R. (1993) Arachidonic acid increases the activity of the assembled NADPH oxidase in cytoplasmic membranes and endosomes. Biochim. Biophys. Acta, 1176, 5158.
  • Rustérucci, C., Montillet, J.L., Agnel, J.P. et al. (1999) Involvement of lipoxygenase-dependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death induced by cryptogein on tobacco leaves. J. Biol. Chem. 274, 3644636455.
  • Sagi, M. and Fluhr, R. (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126, 12811290.
  • Shiose, A. and Sumimoto, H. (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J. Biol. Chem. 275, 1379313801.
  • Torres, M.A., Dangl, J.L. and Jones, J.D. (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl Acad. Sci. USA, 99, 517522.
  • Van Gestelen, P., Asard, H. and Caubergs, R.J. (1997) Solubilization and separation of a plant plasma membrane NADPH-Oinline image synthase from other NAD(P)H oxidoreductases. Plant Physiol. 115, 543550.
  • Weber, H. (2002) Fatty acid-derived signals in plants. Trends Plant Sci. 7, 217224.
  • Yoshioka, H., Sugie, K., Park, H.J., Maeda, H., Tsuda, N., Kawakita, K. and Doke, N. (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol. Plant Microbe Interact. 14, 725736.
  • Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J.D. and Doke, N. (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell, 15, 706718.