• Arabidopsis;
  • cell culture;
  • vacuole;
  • SV channel;
  • salt stress


Non-selective slow vacuolar (SV) channels mediate uptake of K+ and Na+ into vacuolar compartment. Under salt stress plant cells accumulate Na+ in the vacuole and release vacuolar K+ into the cytoplasm. It is, however, unclear how plants mediate transport of K+ from the vacuole without concomitant efflux of toxic Na+. Here we show by patch-clamp studies on isolated Arabidopsis thaliana cell culture vacuoles that SV channels do not mediate Na+ release from the vacuole as luminal Na+ blocks this channel. Gating of the SV channel is dependent on the K+ gradient across the vacuolar membrane. Under symmetrical K+ concentrations on both sides of the vacuolar membrane, SV channels mediate potassium uptake. When cytoplasmic K+ decreases, SV channels allow K+ release from the vacuole. In contrast to potassium, Na+ can be taken up by SV channels, but not released even in the presence of a 150-fold gradient (lumen to cytoplasm). Accumulation of Na+ in the vacuole shifts the activation potential of SV channels to more positive voltages and prevents gradient-driven efflux of K+. Similar to sodium, under physiological conditions, vacuolar Ca2+ is not released from vacuoles via SV channels. We suggest that a major Arabidopsis SV channel is equipped with a positively charged intrinsic gate located at the luminal side, which prevents release of Na+ and Ca2+, but permits efflux of K+. This property of the SV channel guarantees that K+ can shuttle across the vacuolar membrane while maintaining Na+ and Ca2+ stored in this organelle.