SEARCH

SEARCH BY CITATION

References

  • Bhalerao, R.P., Eklof, J., Ljung, K., Marchant, A., Bennett, M. and Sandberg, G. (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 29, 325332.
  • Boyer, J.S. and Knipling, E.B. (1965) Isopiestic technique for measuring leaf water potentials with a thermocouple psychrometer. Proc. Natl Acad. Sci. USA, 54, 10441051.
  • Brady, S.M., Sarkar, S.F., Bonetta, D. and McCourt, P. (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34, 6775.
  • Callahan, H.S., Pigliucci, M. and Schlichting, C.D. (1997) Developmental phenotypic plasticity: where ecology and evolution meet molecular biology. BioEssays, 19, 519525.
  • Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G and Bennett, M.J. (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8, 165171.
  • Casimiro, I., Marchant, A., Bhalerao, R.P. et al. (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 13, 843852.
  • Charleton, W.A. (1991) Lateral root initiation. In Plant Roots: The Hidden Half (Waisel, Y., Eshel, A. and Kafkafi, U., eds). New York: Marcel Dekker, pp. 103128.
  • Christmann, A., Hoffman, T., Teplova, I., Grill, E. and Muller, A. (2004) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Phys. 137, 209219.
  • De Smet, I., Signora, L., Beeckman, T., Foyer, C.H. and Zhang, H. (2003) An abscisic acid-sensitive checkpoint in lateral root development in Arabidopsis. Plant J. 33, 543555.
  • Dubrovsky, J.G., Doerner, P.W., Colon-Carmona, A. and Rost, T.L. (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Phys. 124, 16481657.
  • Fitter, A.H. (1991) Characteristics and functions of root systems. In Plant Roots: The Hidden Half (Waisel, Y., Eshel, A. and Kafkafi, U., eds). New York: Marcel Dekker, pp. 325.
  • Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., Rodriguez, P.L. (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell, 14, 18331846.
  • Grime, J.P., Crick, J.C. and Rincon, J.E. (1986) The ecological significance of plasticity. Symp. Soc. Exp. Biol. 40, 529.
  • Kramer, P.J. and Boyer, J.S. (1995) Water Relations of Plants and Soils. Academic Press, Inc., San Diego, USA.
  • Kutz, A., Muller, A., Hennig, P., Kaiser, W., Piotrowski, M. and Weiler, E. (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J. 30, 95106.
  • Leon-Kloosterziel, K.M., Gil, M.A., Ruijs, G.J., Jacobsen, S.E., Olszewski, N.E., Schwartz, S.H., Zeevaart, J.A.D. and Koornneef, M. (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J. 10, 655661.
  • Lopez-Bucio, J., Cruz-Ramirez, A and Herrera-Estrella, L. (2003) The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280287.
  • Lopez-Molina, L., Mongrand, S. and Chua, N.H. (2001) A post-germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl Acad. Sci. USA, 98, 47824787.
  • Malamy, J. (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28 , 6777.
  • Malamy, J.E. and Benfey, P.N. (1997a) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development, 124, 3344.
  • Malamy, J.E. and Benfey, P.N. (1997b) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci. 2, 390396.
  • Malamy, J. and Ryan, K. (2001) Environmental regulation of lateral root initiation in Arabidopsis thaliana. Plant Physiol. 127, 899908.
  • Monroe-Augustus, M., Zolman, B.K. and Bartel, B. (2003) IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell, 15, 29792991.
  • Mouchel, C.F., Briggs, G.C. and Hardtke, C.S. (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev. 18, 700714.
  • Russell, E.W. (1961) The Development of Plant Roots in Soil in Soil Conditions and Plant Growth, 9th edn. New York, NY: John Wiley and Sons, Ltd.
  • Signora, L, De Smet, I., Foyer, C.H. and Zhang, H. (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J. 28, 655662.
  • Spollen, W.G., Sharp, R.E., Saab, I.N. and Wu, Y. (1993) Regulation of cell expansion in roots and shoots at low water potentials. In Water Deficits: Plant Responses from Cell to Community (Smith, J.A.C. and Griffiths, H., eds). Oxford: BIOS Scientific Publishers, pp. 3752.
  • van der Weele, C.M., Spollen, W.G., Sharo, R.E., and Baskin, T.I. (2000) Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J. Exp. Bot. 51, 15551562.
  • Wilkinson, S. and Davies, W.J. (2002) ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25, 195210.
  • Zhang, H. and Forde, B.G. (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279, 407408.
  • Zhang, H., Jennings, A.J. and Forde, B.G. (2000) Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51, 5159.