SEARCH

SEARCH BY CITATION

References

  • Albert, V.A., Gustafsson, M.H.G. and Di Laurenzio, L. (1998) Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal. In Molecular Systematics of Plants II (Soltis, P.S., Soltis, D.E. and Doyle, J.J., eds). Boston: Kluwer Academic Publishers, pp. 349374.
  • Albert, V.A., Soltis, D.E., Carlson, J.E. et al. (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol. 5, 115.
  • Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. (2000) Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell, 5, 569579.
  • Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M. and van Tunen, A.J. (1992) Differential expression of two MADS box genes in wild-type and mutant Petunia flowers. Plant Cell, 4, 983993.
  • Angenent, G.C., Franken, J., Bussher, M., Colombo, L. and van Tunen, A.J. (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 4, 101112.
  • APGII (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141, 399436.
  • Barkman, T., Chenery, J.G., Mcneal, J.R., Lyons-Weiler, J. and De Pamphilis, C.W. (2000) Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl Acad. Sci. USA, 97, 1316613171.
  • Baum, D.A. (1998) The evolution of plant development. Curr. Opin. Plant Biol. 1, 7986.
  • Becker, A. and Theissen, G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464489.
  • Borsch, T., Hilu, K.W., Quandt, D., Wilde, V., Neinhuis, C. and Barthlott, W. (2003) Non-coding plastid trnT-trnF sequences reveal a highly supported phylogeny of basal angiosperms. J. Evol. Biol. 15, 558567.
  • Bowman, J.L. (1997) Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J. Biosci. 22, 515527.
  • Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119, 721743.
  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N. and Coen, E. (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 72, 8395.
  • Buzgo, M., Soltis, D.E. and Soltis, P.S. (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 165, 925947.
  • Chiang, P.W., Song, W.J., Wu, K.Y., Korenberg, J.R., Fogel, E.J., Van Keuren, M.L., Lashkari, D. and Kurnit, D.M. (1996) Use of a fluorescent-PCR reaction to detect genomic sequence copy number and transcriptional abundance. Genome Res. 6, 10131026.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature, 353, 3137.
  • Colombo, L., Franken, J., Koetje, E., Vanwent, J., Dons, H.J.M., Angenent, G.C. and Vantunen, A.J. (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 7, 18591868.
  • Cronquist, A. (1988) The Evolution and Classification of Flowering Plants, 2nd edn. Bronx: New York Botanical Garden.
  • Davies, B., DiRosa, A., Eneva, T., Saedler, H. and Sommer, H. (1996) Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes. Plant J. 10, 663677.
  • Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. (1999) PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 18, 40234034.
  • De Bodt, S., Raes, J., de Peer, Y.V. and Theissen, G. (2003) And then there were many: MADS goes genomic. Trends Plant Sci. 8, 475483.
  • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 19351940.
  • Doyle, J.J. and Doyle, J.L. (1987) A rapid DNA isolation from small amount of fresh leaf tissue. Phytochem. Bull. 19, 1115.
  • Drews, G.N., Bowman, J.L. and Meyerowitz, E.M. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell, 65, 9911002.
  • Drinnan, A.N., Crane, P.R. and Hoot, S.B. (1994) Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Plant Syst. Evol. Suppl. 8, 93122.
  • Endress, P.K. (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int. J. Plant Sci. 162, 11111140.
  • Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783791.
  • Ferrandiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1, and CAULIFLOWER. Development, 127, 725734.
  • Flanagan, C.A. and Ma, H. (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol. 26, 581595.
  • Flanagan, C., Hu, Y. and Ma, H. (1996) Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10, 343353.
  • Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 15481560.
  • Graham, S.W. and Olmstead, R.G. (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am. J. Bot. 87, 17121730.
  • Graham, S.W., Reeves, P.A., Burns, A.C.E. and Olmstead, R.G. (2000) Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int. J. Plant Sci. 161 (Suppl.), S83S96.
  • Gu, Q., Ferrandiz, C., Yanofsky, M.F. and Martienssen, R. (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125, 15091517.
  • Hardenack, S., Ye, D., Saedler, H. and Grant, S. (1994) Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell, 6, 17751787.
  • Hilu, K.W., Borsch, T., Muller, K. et al. (2003) Inference of angiosperm phylogeny based on matK sequence information. Am. J. Bot. 90, 17581776.
  • Huang, H., Tudor, M., Weiss, C.A., Hu, Y. and Ma, H. (1995) The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol. 28, 549567.
  • Huijser, P., Klein, J., Lonnig, W.E., Meijer, H., Saedler, H. and Sommer, H. (1992) Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene SQUAMOSA in Antirrhinum majus. EMBO J. 11, 12391249.
  • Immink, R.G.H., Ferrario, S., Busscher-Lange, J., Kooiker, M., Busscher, M. and Angenent, G.C. (2003) Analysis of the petunia MADS-box transcription factor family. Mol. Genet. Genomics, 268, 598606.
  • Irish, V.F. (2003) The evolution of floral homeotic gene function. BioEssays, 25, 637646.
  • Jack, T., Brockman, L.L. and Meyerowitz, E.M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683692.
  • Jack, T., Fox, G.L. and Meyerowitz, E.M. (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell, 76, 703716.
  • Judd, W.S., Champbell, C.S., Kellogg, E.A., Stevens, P.F. and Donoghue, M.J. (2002) Plant Systematics: A Phylogenetic Approach. Sunderland, MA: Sinauer Associates.
  • Kang, H.-G., Noh, Y.-S., Chung, Y.-Y., Costa, M.A., An, K. and An, G. (1995) Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol. Biol. 29, 110.
  • Kanno, A., Saeki, H., Kameya, T., Saedler, H. and Theissen, G. (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52, 831841.
  • Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren, M.M. and Angenent, G.C. (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell, 10, 171182.
  • Kempin, S.A., Mandel, M.A. and Yanofsky, M.F. (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol. 103, 705718.
  • Kim, S., Yoo, M.-J., Albert, V.A., Farris, J.S., Soltis, P.S. and Soltis, D.E. (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolution and functional implications of a 260-million-year-old duplication. Am. J. Bot. 91, 21022118.
  • Kim, S., Koh, J., Ma, H., Hu, Y., Endress, P.K., Buzgo, M., Hauser, B.A., Soltis, P.S. and Soltis, D.E. (2005) Sequence and expression studies of A-, B-, and E-class MADS-box genes in Eupomatia (Eupomatiaceae): support for the bractate origin of the calyptra. Int. J. Plant Sci. 166, 185198.
  • Kramer, E.M. and Irish, V.F. (1999) Evolution of genetic mechanisms controlling petal development. Nature, 399, 144148.
  • Kramer, E.M. and Irish, V.F. (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int. J. Plant Sci. 161, S29S40.
  • Kramer, E.M., Dorit, R.L. and Irish, V.F. (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 149, 765783.
  • Kramer, E.M., Di Stilio, V.S. and Schluter, P.M. (2003) Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 111.
  • Kramer, E.M., Jaramillo, M.A. and Di Stilio, V.S. (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics, 166, 10111023.
  • van der Krol, A.R. and Chun, N.H. (1993) Flower development in Petunia. Plant Cell, 5, 11951203.
  • van der Krol, A.R., Brunelle, A., Tsuchimoto, S. and Chua, N.H. (1993) Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes Dev. 7, 12141228.
  • Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B, and C genes. Plant Cell Physiol. 41, 710718.
  • Leutenegger, C.M., Mislin, C.N., Sigrist, B.E., Markus, U., Hofmann-Lehmann, R. and Lutz, H. (1999) Quantitative real-time PCR for the measurement of feline cytokine mRNA. Vet. Immunol. Immunopathol. 71, 291305.
  • Liljegren, S., Gustafson-Brown, C., Pinyopich, A., Ditta, G. and Yanofsky, M. (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 11, 10071018.
  • Litt, A. and Irish, V.F. (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implication for the evolution of floral development. Genetics, 165, 821833.
  • Ma, H. and DePamphilis, C. (2000) The ABCs of floral evolution. Cell, 101, 58.
  • Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1-AGL6, an Arabidopsis gene gamily with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484495.
  • Maddison, W.P. and Maddison, D.R. (1992) MacClade: Analysis of Phylogeny and Character Evolution. Sunderland, MA: Sinauer Associates.
  • Magallón, S. and Sanderson, M.J. (2001) Absolute diversification rates in angiosperm clades. Evolution, 55, 17621780.
  • Mandel, M.A. and Yanofsky, M.F. (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordial. Sex Plant Reprod. 11, 2228.
  • Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360, 273277.
  • Mathews, S. and Donoghue, M.J. (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science, 286, 947950.
  • Mathews, S. and Donoghue, M.J. (2000) Basal angiosperm phylogeny inferred from duplicate phytochromes A and C. Int. J. Plant Sci. 161 (Suppl.), S41S55.
  • Mena, M., Mandel, M.A., Lerner, D.R., Yanofsky, M.F. and Schmidt, R.J. (1995) A characterization of the MADS-box gene family in maize. Plant J. 8, 845854.
  • Mena, M., Ambrose, B., Meeley, R., Briggs, S., Yanofsky, M. and Schmidt, R. (1996) Diversification of C-function activity in maize flower development. Science, 274, 15371540.
  • Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H. and Nagato Y. (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130, 705718.
  • Nam, J., dePamphilis, C.W., Ma, H. and Nei, M. (2003) Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol. Biol. Evol. 20, 14351447.
  • Nickerson, J. and Drouin, G. (2004) The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny. Mol. Phylogenet. Evol. 31, 403415.
  • Parenicova, L., de Folter, S., Kieffer, M. et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell, 15, 15381551.
  • Park, J.H., Ishikawa, Y., Yoshida, R., Kanno, A. and Kameya, T. (2003) Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioceious species Asparagus officinalis L. Plant Mol. Biol. 51, 867875.
  • Park, J.H., Ishikawa, Y., Ochiai, T., Kanno, A. and Kameya, T. (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol. 45, 325332.
  • Parkinson, C.L., Adams, K.L. and Palmer, J.D. (1999) Multigene analyses identify the three earliest lineages of extant flowering plants. Curr. Biol. 9, 14851488.
  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200203.
  • Pinyopich, A., Ditta, G., Savidge, B., Liljegren, S., Baumann, E., Wisman, E. and Yanofsky, M. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424, 8588.
  • Qiu, Y.-L., Lee, J., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer, E.A., Chen, Z., Savolainen, V. and Chase, M.W. (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature, 402, 404407.
  • Qiu, Y.-L., Lee, J.-Y., Bernasconi-Quadroni, F., Soltis, D.E., Soltis, P.S., Zanis, M., Zimmer, E., Chen, Z., Savolainen, V. and Chase, M. (2000) Phylogeny of basal angiosperms: analyses of five genes from three genomes. Int. J. Plant Sci. 161 (Suppl.), S3S27.
  • Ronse De Craene, L.P.R., Soltis, P.S. and Soltis, D.E. (2003) Evolution of floral structures in basal angiosperms. Int. J. Plant Sci. 164, S329S363.
  • Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell, 8, 12591269.
  • Savidge, B., Rounsley, S. and Yanofsky, M. (1995) Temporal relationship between the transcription of 2 Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell, 7, 721733.
  • Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S. and Yanofsky, M.F. (1993) Identification and characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell, 5, 729737.
  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, F., Lonnig, W.E., Saedler, H. and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251263.
  • Soltis, P.S. and Soltis, D.E (2004) The origin and diversification of the angiosperms. Am J. Bot. 91, 16141626.
  • Soltis, P.S., Soltis, D.E. and Chase, M.W. (1999). Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 402, 402404.
  • Soltis, D.E., Soltis, P.S., Chase, M.W. et al. (2000) Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL and atpB sequences. Bot. J. Linn. Soc. 133, 381461.
  • Soltis, P.S., Soltis, D.E., Zanis, M.J. and Kim, S. (2000) Basal lineages of angiosperms: relationships and implications for floral evolution. Int. J. Plant Sci. 161 (Suppl.), S97S107.
  • Soltis, D.E., Soltis, P.S., Albert, V.A., Oppenheimer, D.G., de Pamphilis, C.W., Ma, H., Frohlich, M.W. and Theissen, G. (2002) Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 7, 2231.
  • Sommer H., Beltran J.P., Huijser P., Pape H., Lonnig W.E., Saedler H. and Schwarz-Sommer Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605613.
  • Sommer, H., Nacken, W., Beltran, P., Huijser, P., Pape, H., Hansen, R., Flor, P., Saedler, H. and Schwarz-sommer, Z. (1991) Properties of DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus. Development, 1 (Suppl. 1), 169175.
  • Stellari, G.M., Jaramillo, M.A. and Kramer, E.M. (2004) Evloution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol. Biol. Evol. 21, 506519.
  • Swofford, D.L. (2001) PAUP* 4.0b10: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer Associates.
  • Taylor, S.A., Hofer, J.M.I., Murfet, I.C., Sollinger, J.D., Singer, S.R., Knox, M.R. and Noel Ellis, T.H. (2002) PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in Pea. Plant Physiol. 27, 6978.
  • Theissen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 7585.
  • Theissen, G., Kim, J.T. and Saedler, H. (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43, 484516.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 48764882.
  • Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.E., Saedler, H., Sommer, H. and Schwarz-sommer, Z. (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 46934704.
  • Tsuchimoto, S., Mayama, T., van der Krol, A. and Ohtsubo, E. (2000) The whorl-specific action of a petunia class B floral homeotic gene. Genes Cells, 5, 8999.
  • van Tunen, A.J., Eikelboom, W. and Angenent, G.C. (1993) Floral organogenesis in Tulipa. Flow. Newsl. 16, 3338.
  • Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K. and Gerats, T. (2004) The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell, 16, 741754.
  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346, 3539.
  • Yu, D.Y., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A. and Teeri, T.H. (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17, 5162.
  • Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., de Pamphilis, C.W. and Ma, H. (2005a) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169, 22092223.
  • Zahn, L.M., Leebens-Mack, J., de Pamphilis, Ma, H. and Theissen, G. (2005b) To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered. 96, 225240.
  • Zanis, M.J., Soltis, D.E., Soltis, P.E., Mathews, S. and Donoghue, M.J. (2002) The root of the angiosperms revisited. Proc. Natl Acad. Sci. USA, 99, 68486853.
  • Zanis, M.J., Soltis, D.E., Soltis, P.S., Qiu, Y.-L. and Zimmer, E. (2003) Phylogenetic analyses and perianth evolution in basal angiosperms. Ann. Mo. Bot. Gard. 90, 129150.