SEARCH

SEARCH BY CITATION

References

  • Alonso, J.M., Stepanova, A.N., Leisse, T.J. et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653657.
  • Borevitz, J.O., Xia, Y.J., Blount, J., Dixon, R.A. and Lamb, C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 12, 23832393.
  • Brown, P.D., Tokuhisa, J.G., Reichelt, M. and Gershenzon, J. (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62, 471781.
  • Chapple, C.C.S., Shirley, B.W., Zook, M., Hammerschmidt, R. and Somerville, S.C. (1994) Secondary metabolism in Arabidopsis. In Arabidopsis (Meyerowitz, E.M., ed.). Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press, pp. 9891030.
  • Denby, K.J., Kumar, P. and Kliebenstein, D.J. (2004) Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J. 38, 473486.
  • Dewey, F.M., Ebeler, S.E., Adams, D.O., Noble, A.C. and Meyer, U.M. (2000) Quantification of Botrytis in grape juice determined by a monoclonal antibody-based immunoassay. Am. J. Enol. Vitic. 51, 276282.
  • Ferrari, S., Plotnikova, J.M., De Lorenzo, G. and Ausubel, F.M. (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J. 35, 193205.
  • Glawischnig, E., Hansen, B.G., Olsen, C.E. and Halkier, B.A. (2004) Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl Acad. Sci. USA, 101, 82458250.
  • Glazebrook, J. and Ausubel, F.M. (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl Acad. Sci. USA, 91, 89558959.
  • Glazebrook, J., Rogers, E.E. and Ausubel, F.M. (1997) Use of Arabidopsis for genetic dissection of plant defence responses. Ann. Rev. Genet. 31, 547569.
  • Goetz, G., Fkyerat, A., Metais, N., Kunz, M., Tabacchi, R., Pezet, R. and Pont, V. (1999) Resistance factors to grey mould in grape berries: identification of some phenolic inhibitors of Botrytis cinerea stilbene oxidase. Phytochemistry, 52, 759767.
  • Govrin, E.M. and Levine, A. (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751757.
  • Harsh, P.B., Prithiviral, B., Jha, A.K., Ausubel, F.M. and Vivanco, J.M. (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature, 434, 217221.
  • Hemm, M.R., Ruegger, M.O. and Chapple, C. (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell, 15, 179194.
  • Hogge, L.R., Reed, D.W., Underhill, E.W. and Haughn, G.W. (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chromatography–mass spectrometry. J. Chrom. Sci. 26, 551556.
  • Jander, G., Cui, J., Nhan, B., Pierce, N.E. and Ausubel, F.M. (2001) The TASTY locus on chromosome 1 of Arabidopsis affects feeding of the insect herbivore Trichoplusia ni. Plant Physiol. 126, 890898.
  • Kliebenstein, D.J. (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 27, 675684.
  • Kliebenstein, D.J., Gershenzon, J. and Mitchell-Olds, T. (2001a) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics, 159, 359370.
  • Kliebenstein, D.J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell-Olds, T. (2001b) Genetic control of natural variation in Arabidopsis thaliana glucosinolate accumulation. Plant Physiol. 126, 811825.
  • Kliebenstein, D.J., Pedersen, D. and Mitchell-Olds, T. (2002) Comparative analysis of insect resistance QTL and QTL controlling the myrosinase/glucosinolate system in Arabidopsis thaliana. Genetics, 161, 325332.
  • Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D. and Gershenzon, J. (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell, 13, 27932807.
  • Lehfeldt, C., Shirley, A.M., Meyer, K., Ruegger, M.O., Cusumano, J.C., Viitanen, P.V., Strack, D. and Chapple, C. (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell, 12, 12951306.
  • Lorenzen, M., Racicot, V., Strack, D. and Chapple, C. (1996) Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of Arabidopsis. Plant Physiol. 112, 16251630.
  • Mansfield, J.W., Hargreaves, J.A. and Boyle, F.C. (1974) Phytoalexin production by live cells in broad bean leaves infected with Botrytis cinerea. Nature, 252, 316317.
  • Mansfield, J.W., Porter, A.E.A. and Smallman, R.V. (1980) Dihydrowyerone derivatives as components of the furanoacetylenic phytoalexin response of tissues of Vicia faba. Phytochemistry, 19, 10571061.
  • Mert-Turk, F., Bennett, M.H., Mansfield, J.W. and Holub, E.B. (2003a) Quantification of camalexin in several accessions of Arabidopsis thaliana following induction with Peronospora parasitica and UV-B irradiation. Phytoparasitica, 31, 8189.
  • Mert-Turk, F., Bennett, M.H., Mansfield, J.W. and Holub, E.B. (2003b) Camalexin accumulation in Arabidopsis thaliana following abiotic elicitation or inoculation with virulent or avirulent Hyaloperonospora parasitica. Physiol. Mol. Plant Pathol. 62, 137145.
  • Meyer, K., Cusumano, J.C., Somerville, C. and Chapple, C.C.S. (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc. Natl Acad. Sci. USA, 93, 68696874.
  • Muller, K.O. (1961) The phytoalexin concept and its methodological significance. Rec. Adv. Bot. 1, 396400.
  • Muller, K.O., Meyer, G. and Klikowski, M. (1939) Physiologische und genetische untersuchungen uber die resistenz der kartoffel gegenuber Phytophthora infestans. Naturwissenschaften, 27, 765768.
  • Osbourn, A.E. (1999) Antimicrobial phytoprotectants and fungal pathogens: a commentary. Fungal Genet. Biol. 26, 163168.
  • Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J. and Osbourn, A.E. (1999) Compromised disease resistance in saponin deficient plants. Proc. Natl Acad. Sci. USA, 96, 1292312928.
  • Pedras, M.S.C. and Ahiahonu, P.W.K. (2002) Probing the phytopathogenic stem rot fungus with phytoalexins and analogs: unprecedented glucosylation of camalexin and 6-methoxycamalexin. Bioorg. Med. Chem. 10, 33073312.
  • Pedras, M.S.C. and Khan, A.Q. (1997) Unprecedented detoxification of the phytoalexin camalexin by a root rot pathogen. Bioorg. Med. Chem. Lett. 7, 22552260.
  • Peuppke, S.G. and VanEtten, H.D. (1976) The relationship between pisatin and the development of Aphanomyces euteiches in diseased Pisum sativum. Phytopathology, 66, 11741185.
  • Quidde, T., Osbourn, A.E. and Tudzynski, P. (1998) Detoxification of alpha-tomatine by Botrytis cinerea. Physiol. Mol. Plant Pathol. 52, 151165.
  • Rahe, J.E. (1973) Occurrence and levels of the phytoalexin phaseollin in relation to delimitation at sites of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Can. J. Bot. 53, 921928.
  • Reichelt, M., Brown, P.D., Schneider, B., Oldham, N.J., Stauber, E., Tokuhisa, J., Kliebenstein, D.J., Mitchell-Olds, T. and Gershenzon, J. (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 59, 663671.
  • Reuber, T.L., Plotnikova, J.M., Dewdney, J., Rogers, E.E., Wood, W. and Ausubel, F.M. (1998) Correlation of defence gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J. 16, 473487.
  • Rodman, J. (1980) Population variation and hybridization in sea-rockets (Cakile, Cruciferae): seed glucosinolate characters. Am. J. Bot. 67, 11451159.
  • Shirley, B.W., Kubasek, W.L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F.M. and Goodman, H.M. (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8, 659671.
  • Shirley, A.M., McMichael, C.M. and Chapple, C. (2001) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose: choline sinapoyltransferase. Plant J. 28, 8394.
  • Staats, M., van Baarlen, P. and van Kan, J.A.L. (2005) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol. Biol. Evol. 22, 333346.
  • Stahl, E. (1888) Pflanzen und Schnecken, biologische Studie über die Schutzmittel der Pflanzen gegen Schneckenfraß. Jenaische Z. Naturwiss. 15, 557684.
  • Terry, L.A., Joyce, D.C., Adikaram, N.K.B. and Khambay, B.P.S. (2004) Preformed antifungal compounds in strawberry fruit and flower tissues. Postharvest Biol. Technol. 31, 201212.
  • Thomma, B.P., Nelissen, I., Eggermont, K. and Broekaert, W.F. (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J. 19, 163171.
  • Tierens, K.-J., Thomma, B., Brower, M., Schmidt, J., Kistner, K., Porzel, A., Mauch-Mani, B., Cammue, B. and Broekaert, W. (2001) Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol. 125, 16881699.
  • Van Etten, H.D., Matthews, D.E. and Smith, D.A. (1982) Metabolism of phytoalexins. In Phytoalexins (Bailey, J.A. and Mansfield, J.W., eds). Glasgow/London: Blackie, pp. 181217.
  • Van Etten, H.D., Matthews, D.E. and Matthews, P.S. (1989) Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27, 143164.
  • Wink, M. (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75, 225233.
  • Wurms, K.V., George, M.P. and Lauren, D.R. (2003) Involvement of phenolic compounds in host resistance against Botrytis cinerea in leaves of the two commercially important kiwifruit (Actinidia chinensis and A. deliciosa) cultivars. N Z J. Crop Hortic. Sci. 31, 221233.
  • Zhao, J.M., Williams, C.C. and Last, R.L. (1998) Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell, 10, 359370.
  • Zhao, Y.D., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J. and Celenza, J.L. (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16, 31003112.
  • Zhou, N., Tootle, T.L. and Glazebrook, J. (1999) Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell, 11, 24192428.