SEARCH

SEARCH BY CITATION

References

  • Alonso, A.P., Vigeolas, H., Raymond, P., Rolin, D. and Dieuaide-Noubhani, M. (2005) A new substrate cycle in plants. Evidence for a high glucose–phosphate–to–glucose turnover from in vivo steady state and pulse labelling experiments with [13C]-glucose and [14C]glucose. Plant Physiol. 138, 22202232.
  • Bacher, A., Rieder, C., Eichinger, D., Arigoni, D., Fuchs, G. and Eisenreich, W. (1999) Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis. FEMS Microbiol. Rev. 22, 567598.
  • Baroja-Fernández, E., Muñoz, F.J., Zandueta-Criado, A., Morán-Zorzano, M.T., Viale, A.M., Alonso-Casajús, N. and Pozueta-Romero, J. (2004) Most of ADP·glucose linked to starch biosynthesis occurs outside the chloroplast in source leaves. Proc. Natl Acad. Sci. USA 101, 1308013085.
  • Baroja-Fernández, E., Muñoz, F.J. and Pozueta-Romero, J. (2005) Response to Neuhaus et al.: no need to shift the paradigm on the metabolic pathways to transitory starch in leaves. Trends Plant Sci. 10, 156158.
  • Bino, R.J., Hall, R.D., Fiehn, O. et al. (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9, 418425.
  • Boatright, J., Negre, F., Chen, X., Kish, C.M., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 19932011.
  • Bonarius, H.P.J., Schmid, G. and Tramper, J. (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol. 15, 308314.
  • Borowitz, M.J., Stein, R.B. and Blum, J.J. (1977) Quantitative analysis of the change of metabolite fluxes along the pentose phosphate and glycolytic pathways in Tetrahymena in response to carbohydrates. J. Biol. Chem. 252, 15891605.
  • Christensen, B. and Nielsen, J. (1999) Isotopomer analysis using GC–MS. Metab. Eng. 1, 282290.
  • Converti, P. and Perego, P. (2002) Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59, 303309.
  • Cornish-Bowden, A. and Cárdenas, M.L. (2000) From genome to cellular phenotype – a role for metabolic flux analysis? Nat. Biotechnol. 18, 267268.
  • Dauner, M., Bailey, J.E. and Sauer, U. (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76, 144156.
  • Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradet, A. and Raymond, P. (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose. J. Biol. Chem. 270, 1314713159.
  • Edwards, S., Nguyen, B.-T., Do, B. and Roberts, J.K.M. (1998) Contribution of malic enzyme, pyruvate kinase, phosphenolpyruvate carboxylase, and the Krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance and gas chromatography–mass spectrometry. Plant Physiol. 116, 10731081.
  • Ettenhuber, C., Radykewicz, T., Kofer, W., Koop, H.-U., Bacher, A. and Eisenreich, W. (2005) Metabolic flux analysis in complex isotopolog space. Recycling of glucose in tobacco plants. Phytochemistry, 66, 323335.
  • Fan, T.W.-M. (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Mag. Res. Spectrosc. 28, 161219.
  • Fell, D.A. (1997) Understanding the Control of Metabolism. London: Portland Press.
  • Fell, D.A. (2005) Enzymes, metabolites and fluxes. J. Exp. Bot. 56, 267272.
  • Fernandez, C.A., Des Rosiers, C., Previs, S.F. and Brunengraber, H. (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255262.
  • Fernie, A.R., Roscher, A., Ratcliffe, R.G. and Kruger, N.J. (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta, 212, 250263.
  • Fernie, A.R., Geigenberger, P. and Stitt, M. (2005) Flux an important, but neglected, component of functional genomics. Curr. Opin. Plant Biol. 8, 174182.
  • Fischer, E. and Sauer, U. (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC–MS. Eur. J. Biochem. 270, 880891.
  • Glawischnig, E., Tomas, A., Eisenreich, W., Spiteller, P., Bacher, A. and Gierl, A. (2000) Auxin biosynthesis in maize kernels. Plant Physiol. 123, 11091119.
  • Glawischnig, E., Gierl, A., Tomas, A., Bacher, A. and Eisenreich, W. (2001) Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels. Plant Physiol. 125, 11781186.
  • Glawischnig, E., Gierl, A., Tomas, A., Bacher, A. and Eisenreich, W. (2002) Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by nuclear magnetic resonance. Plant Physiol. 130, 17171727.
  • de Graaf, A.A., Eggeling, L. and Sahm, H. (2001) Metabolic engineering for l-lysine production by Corynebacterium glutamicum. In Advances in Biochemical Engineering/Biotechnology vol 73 (Nielsen, J., ed.). Berlin: Springer-Verlag, pp. 929.
  • Hellerstein, M.K. (2004) New stable isotope–mass spectrometric techniques for measuring fluxes through intact metabolic pathways in mammalian systems: introduction of moving pictures into functional genomics and biochemical phenotyping. Metab. Eng. 6, 85100.
  • Hill, S.A. and ap Rees, T. (1994) Fluxes of carbohydrate metabolism in ripening bananas. Planta, 192, 5260.
  • Jander, G., Norris, S.R., Joshi, V., Fraga, M., Rugg, A., Yu, S., Li, L. and Last, R.L. (2004) Application of a high-throughput HPLC–MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant J. 39, 465475.
  • Katz, J. and Rognstad, R. (1967) The labeling of pentose phosphate from glucose–14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry, 6, 22272247.
  • Klapa, M.I., Aon, J.-C. and Stephanopoulos, G. (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur. J. Biochem, 270, 35253542.
  • Kocsis, M.G., Nolte, K.D., Rhodes, D., Shen, T.-L., Gage, D.A. and Hanson, A.D. (1998) Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora. Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiol. 117, 273281.
  • Koffas, M.A.G., Jung, G.Y. and Stephanopoulos, G. (2003) Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab. Eng. 5, 3241.
  • Krishnan, P., Kruger, N.J. and Ratcliffe, R.G. (2005) Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56, 255265.
  • Krömer, J.O., Sorgenfrei, O., Klopprogge, K., Heinzle, E. and Wittmann, C. (2004) In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome and fluxome. J. Bacteriol. 186, 17691784.
  • Kruger, N.J. and Ratcliffe, R.G. (2006) Metabolic organization in plants: a challenge for the metabolic engineer. In Advances in Plant Biochemistry and Molecular Biology vol 1, Bioengineering and Molecular Biology of Plant Pathways (Bohnert, H.J. and Nguyen, H.T., eds) in press.
  • Kruger, N.J. and von Schaewen, A. (2003) The oxidative pentose phosphate pathway: structure and organization. Curr. Opin. Plant Biol. 6, 236246.
  • Kruger, N.J., Ratcliffe, R.G. and Roscher, A. (2003) Quantitative approaches for analysing fluxes through plant metabolic networks using NMR and stable isotope labelling. Phytochem. Rev. 2, 1730.
  • Maaheimo, H., Fiaux, J., Çakar, Z.P., Bailey, J.E., Sauer, U. and Szyperski, T. (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur. J. Biochem. 268, 24642479.
  • Marin, S., Lee, W.-N.P., Bassilian, S., Lim, S., Boros, L.G., Centelles, J.J., Fernández-Novell, J.M., Guinovart, J.J. and Cascante, M. (2004) Dynamic profiling of the glucose metabolic network in fasted rat hepatocytes using [1,2-13C2]glucose. Biochem. J. 381, 287294.
  • Marx, A., Eikmanns, B.J., Sahm, H., de Graaf, A.A. and Eggeling, L. (1999) Response of the central metabolism in Corynebacterium glutamicum, to the use of an NADH-dependent glutamate dehydrogenase. Metab. Eng. 1, 3548.
  • Mason, G.F. and Rothman, D.L. (2004) Basic principles of metabolic modeling of NMR 13C isotopic turnover to determine rates of brain metabolism in vivo. Metab. Eng. 6, 7584.
  • Matsuda, F., Morino, K., Miyashita, M. and Miyagawa, H. (2003) Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC–MS spectroscopy. Plant Cell Physiol. 44, 510517.
  • Matsuda, F., Morino, K., Ano, R., Kuzawa, M., Wakasa, K. and Miyagawa, H. (2005) Metabolic flux analysis of the phenylpropanoid pathway in elicitor-treated potato tuber tissue. Plant Cell Physiol. 46, 454466.
  • McNeil, S.D., Nuccio, M.L., Rhodes, D., Shachar-Hill, Y. and Hanson, A.D. (2000a) Radiotracer and computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco. Plant Physiol. 123, 371380.
  • McNeil, S.D., Rhodes, D., Russell, B.L., Nuccio, M.L., Shachar-Hill, Y. and Hanson, A.D. (2000b) Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol. 124, 153162.
  • Mendes, P. (1993) GEPASI: a software package for modeling the dynamics, steady state and control of biochemical and other systems. Comput. Appl. Biosci. 9, 563571.
  • Moles, C.G., Mendes, P. and Banga, J.R. (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 24672474.
  • Morgan, J.A. and Rhodes, D. (2002) Mathematical modeling of plant metabolic pathways. Metab. Eng. 4, 8089.
  • Neuhaus, H.E., Häusler, R.E. and Sonnewald, U. (2005) No need to shift the paradigm on the metabolic pathways to transitory starch in leaves. Trends Plant Sci. 10, 154156.
  • Pasternack, L.B., Littlepage, L.E., Laude, D.A. and Appling, D.R. (1996) 13C NMR analysis of the use of alternative donors to the tetrahydrofolate-dependent one-carbon pools in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 326, 158165.
  • Petersen, S., de Graaf, A.A., Eggeling, L., Möllney, M., Wiechert, W. and Sahm, H. (2000) In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum. J. Biol. Chem. 275, 3593235941.
  • Petersen, S., Mack, C., de Graaf, A.A., Riedel, C., Eikmanns, B.J. and Sahm, H. (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo. Metab. Eng. 3, 344361.
  • Pettinen, A., Aho, T., Smolander, O.-P., Manninen, T., Saarinen, A., Taattola, K.-L., Yli-Harja, O. and Linne, M.-L. (2005) Simulation tools for biochemical networks: evaluation of performance and usability. Bioinformatics, 21, 357363.
  • Portais, J.-C. and Delort, A.-M. (2002) Carbohydrate cycling in micro-organisms: what can 13C-NMR tell us? FEMS Microbiol. Rev. 26, 375402.
  • Ratcliffe, R.G. and Shachar-Hill, Y. (2001) Probing plant metabolism with NMR. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 499526.
  • Ratcliffe, R.G. and Shachar-Hill, Y. (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol. Rev. 80, 2743.
  • Ratcliffe, R.G., Roscher, A. and Shachar-Hill, Y. (2001) Plant NMR spectroscopy. Prog. Nucl. Mag. Res. Spectrosc. 39, 267300.
  • ap Rees, T. and Hill, S.A. (1994) Metabolic control analysis of plant metabolism. Plant Cell Environ. 17, 587599.
  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N. and Willmitzer, L. (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J. 23, 131142.
  • Roessner-Tunali, U., Liu, J.L., Leisse, A., Balbo, I., Perez-Melis, A., Willmitzer, L. and Fernie, A.R. (2004) Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. Plant J. 39, 668679.
  • Rontein, D., Dieuaide-Noubhani, M., Dufourc, E.J., Raymond, P. and Rolin, D. (2002) The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. J. Biol. Chem. 277, 4394843960.
  • Roscher, A., Kruger, N.J. and Ratcliffe, R.G. (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J. Biotechnol. 77, 81102.
  • Sauer, U. (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol. 15, 5863.
  • Sauer, U., Lasko, D.R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wüthrich, K. and Bailey, J.E. (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central metabolism. J. Bacteriol. 181, 66796688.
  • Schauer, N., Steinhauser, D., Strelkov, S. et al. (2005) GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579, 13311337.
  • Schmidt, K., Nielsen, J. and Villadsen, J. (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71, 175190.
  • Schwender, J. and Ohlrogge, J.B. (2002) Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol. 130, 347361.
  • Schwender, J., Ohlrogge, J.B. and Shachar-Hill, Y. (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J. Biol. Chem. 278, 2944229453.
  • Schwender, J., Goffman, F., Ohlrogge, J.B. and Shachar-Hill, Y. (2004a) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432, 779782.
  • Schwender, J., Ohlrogge, J. and Shachar-Hill, Y. (2004b) Understanding flux in plant metabolic networks. Curr. Opin. Plant Biol. 7, 309317.
  • Sims, A.P. and Folkes, B.P. (1964) A kinetic study of the assimilation of [15N]-ammonia and the synthesis of amino acids in an exponentially growing culture of Candida utilis. Proc. R. Soc. Lond. B. Biol. Sci. 159, 479502.
  • Sriram, G. and Shanks, J.V. (2004) Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. Metab. Eng. 6, 116132.
  • Sriram, G., Fulton, D.B., Iyer, V.V., Peterson, J.M., Zhou, R., Westgate, M.E., Spalding, M.H. and Shanks, J.V. (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two dimensional [13C, 1H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol. 136, 30433057.
  • Szyperski, T. (1995) Biosyntheically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433448.
    Direct Link:
  • Szyperski, T. (1998) 13C-NMR, MS and metabolic flux balancing in biotechnology research. Quart. Rev. Biophys. 31, 41106.
  • Tesch, M., de Graaf, A.A. and Sahm, H. (1999) In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl. Environ. Microbiol. 65, 10991109.
  • Voit, E.O., Alvarez-Vasquez, F. and Sims, K.J. (2004) Analysis of dynamic labeling data. Math. Biosci. 191, 8399.
  • Wiechert, W. (2001) 13C metabolic flux analysis. Metab. Eng. 3, 195206.
  • Wiechert, W. and Nöh, K. (2005) From stationary to instationary metabolic flux analysis. In Advances in Biochemical Engineering/Biotechnology vol 92 (Kragl, U., ed). Berlin: Springer-Verlag, pp. 145172.
  • Wiechert, W., Möllney, M., Petersen, S. and de Graaf, A.A. (2001) A universal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265283.
  • van Winden, W.A., Heijnen, J.J. and Verheijen, P.J.T. (2002) Cumulative bondomers: a new concept in flux analysis from 2D [13C,1H] COSY NMR data. Biotechnol. Bioeng. 80, 731745.
  • Wittmann, C. (2002) Metabolic flux analysis using mass spectrometry. In Advances in Biochemical Engineering/Biotechnology vol 74 (Schügerl, K. and Zeng, A.-P., eds). Berlin: Springer-Verlag, pp. 3964.
  • Yang, C., Hua, Q. and Shimizu, K. (2002) Quantitative analysis of intracellular metabolic fluxes using GC–MS and two-dimensional NMR spectroscopy. J. Biosci. Bioeng. 93, 7887.
  • Zamboni, N. and Sauer, U. (2004) Model-independent fluxome profiling from 2H and 13C experiments for metabolic variant discrimination. Genome Biol., 5, R99.