SEARCH

SEARCH BY CITATION

References

  • Basset, G., Quinlivan, E.P., Ziemak, M.J., Díaz de la Garza, R., Fischer, M., Schiffmann, S., Bacher, A., Gregory, J.F., III and Hanson, A.D. (2002) Folate synthesis in plants: the first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proc. Natl Acad. Sci. USA, 99, 1248912494.
  • Bello, A.R., Nare, B., Freedman, D., Hardy, L. and Beverley, S.M. (1994) PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc. Natl Acad. Sci. USA, 91, 1144211446.
  • Blakley, R.L. (ed.) (1969) Chemical and physical properties of pterins and folate derivatives. In The Biochemistry of Folic Acid and Related Pteridines. New York: Wiley, pp. 58105.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Brown, G.M., Weisman, R.A. and Molnar, D.A. (1961) The biosynthesis of folic acid. I. Substrate and cofactor requirements for enzymatic synthesis by cell-free extracts of Escherichia coli. J. Biol. Chem. 236, 25342543.
  • Chan, S.Y. and Cossins, E.A. (2003) The intracellular distribution of folate derivatives in pea leaves. Pteridines, 14, 6776.
  • Cossins, E.A. (2000) The fascinating world of folate and one-carbon metabolism. Can. J. Bot. 78, 691708.
  • Díaz de la Garza, R., Quinlivan, E.P., Klaus, S.M., Basset, G.J., Gregory, J.F., III and Hanson, A.D. (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc. Natl Acad. Sci. USA, 101, 1372013725.
  • Ferone, R. (1973) The enzymic synthesis of dihydropteroate and dihydrofolate by Plasmodium berghei. J. Protozool. 20, 459464.
  • Fryer, M.J., Oxborough, K., Mullineaux, P.M. and Baker, N.R. (2002) Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot. 53, 12491254.
  • Gorton, H.L. and Vogelmann, T.C. (1996) Effects of epidermal cell shape and pigmentation on optical properties of antirrhinum petals at visible and ultraviolet wavelengths. Plant Physiol. 112, 879888.
  • Goyer, A., Collakova, E., Díaz de la Garza, R., Quinlivan, E.P., Williamson, J., Gregory, J.F., III, Shachar-Hill, Y. and Hanson, A.D. (2005) 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. J. Biol. Chem. 280, 2613726142.
  • Green, J.C., Nichols, B.P. and Matthews, R.G. (1996) Folate biosynthesis, reduction, and polyglutamylation. In Escherichia coli and Salmonella– Cellular and Molecular Biology, Vol. 1, 2nd edn (Neidhardt, F.C., ed.). Washington, D.C., USA: ASM Press, pp. 665673.
  • Gregory, J.F., III (1989) Chemical and nutritional aspects of folate research: analytical procedures, methods of folate synthesis, stability, and bioavailability of dietary folates. Adv. Food Nutr. Res. 33, 1101.
  • Gregory, J.F., III and Quinlivan, E.P. (2002) In vivo kinetics of folate metabolism. Annu. Rev. Nutr. 22, 199220.
  • Hillcoat, B.L., Nixon, P.F. and Blakley, R.L. (1967) Effect of substrate decomposition on the spectrophotometric assay of dihydrofolate reductase. Anal. Biochem. 21, 178189.
  • Hussein, M.J., Green, J.M. and Nichols, B.P. (1998) Characterization of mutations that allow p-aminobenzoyl-glutamate utilization by Escherichia coli. J. Bacteriol. 180, 62606268.
  • Imeson, H.C., Zheng, L.L. and Cossins, E.A. (1990) Folylpolyglutamyl derivatives of Pisum sativum L. Determination of polyglutamate chain lengths by high performance liquid chromatography following conversion to p-aminobenzoylpolyglutamates. Plant Cell Physiol. 31, 223231.
  • Lowry, O.H., Bessey, O.A. and Crawford, E.J. (1949) Photolytic and enzymatic transformations of pteroylglutamic acid. J. Biol. Chem. 180, 389398.
  • McCullough, J.L., Chabner, B.A. and Bertino, J.R. (1971) Purification and properties of carboxypeptidase G1. J. Biol. Chem. 246, 72077213.
  • McPartlin, J., Courtney, G., McNulty, H., Weir, D. and Scott, J. (1992) The quantitative analysis of endogenous folate catabolites in human urine. Anal. Biochem. 206, 256261.
  • Mitsuda, H. and Suzuki, Y. (1971) Enzymatic conversion of 2-amino-4-hydroxy-6-formyl-7,8-dihydropteridine to 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine by cell-free extracts of Escherichia coli B. J. Vitaminol. 17, 59.
  • Mouillon, J.M., Ravanel, S., Douce, R. and Rébeillé, F. (2002) Folate synthesis in higher-plant mitochondria: coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities. Biochem. J. 363, 313319.
  • Nare, B., Hardy, L.W. and Beverley, S.M. (1997) The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J. Biol. Chem. 272, 1388313891.
  • Neidhardt, F.C. (1996) Escherichia coli and Salmonella– Cellular and Molecular Biology, Vol. 1, 2nd edn. Washington, D.C., USA: ASM Press.
  • Orsomando, G., Díaz de la Garza, R., Green, B.J., Peng, M., Rea, P.A., Ryan, T.J., Gregory, J.F., III and Hanson, A.D. (2005) Plant γ-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles. J. Biol. Chem. 280, 2887728884.
  • Ortiz, P.J. (1970) Dihydrofolate and dihydropteroate synthesis by partially purified enzymes from wild-type and sulfonamide-resistant Pneumonococcus. Biochemistry, 9, 355361.
  • Pfleiderer, W. (1985) Chemistry of naturally occurring pteridines. In Folates and Pterins, Vol. 2 (Blakley, R.L. and Benkovic, S., eds). New York: Wiley, pp. 43114.
  • Prabhu, V., Chatson, K.B., Abrams, G.D. and King, J. (1996) 13C Nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis. Plant Physiol. 112, 207216.
  • Prabhu, V., Chatson, K.B., Lui, H., Abrams, G.D. and King, J. (1998) Effects of sulfanilamide and methotrexate on 13C fluxes through the glycine decarboxylase/serine hydroxymethyltransferase enzyme system in Arabidopsis. Plant Physiol. 116, 137144.
  • Quinlivan, E.P., Roje, S., Basset, G., Shachar-Hill, Y., Gregory, J.F., III and Hanson, A.D. (2003) The folate precursor p-aminobenzoate is reversibly converted to its glucose ester in the plant cytosol. J. Biol. Chem. 278, 2073120737.
  • Rébeillé, F., Macherel, D., Mouillon, J.M., Garin, J. and Douce, R. (1997) Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO J. 16, 947957.
  • Reed, L.S. and Archer, M.C. (1980) Oxidation of tetrahydrofolic acid by air. J. Agric. Food Chem. 28, 801805.
  • Rembold, H. (1985) Catabolism of pterins. In Folates and Pterins, Vol. 2 (Blakley, R.L. and Benkovic, S.J., eds). New York: Wiley, pp. 155178.
  • Scott, J.M. (1984) Catabolism of folates. In Folates and Pterins, Vol. 1 (Blakley, R.L. and Benkovic, S.J., eds). New York: Wiley, pp. 307327.
  • Scott, J., Rébeillé, F. and Fletcher, J. (2000) Folic acid and folates: the feasibility of nutritional enhancement in plant foods. J. Sci. Food Agric. 80, 795824.
  • Scrimgeour, K.G. (1980) Methods for reduction, stabilization, and analyses of folates. Methods Enzymol. 66, 517523.
  • Sherwood, R.F., Melton, R.G., Alwan, S.M. and Hughes, P. (1985) Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16. Use of a novel triazine dye affinity method. Eur. J. Biochem. 148, 447453.
  • Shiota, T. (1959) Enzymic synthesis of folic acid-like compounds by cell-free extracts of Lactobacillus arabinosus. Arch. Biochem. Biophys. 80, 155161.
  • Shiota, T., Baugh, C.M., Jackson, R. and Dillard, R. (1969) The enzymatic synthesis of hydroxylmethyldihydropteridine pyrophosphate and dihydrofolate. Biochemistry, 8, 50225028.
  • Simkin, A.J., Schwartz, S.H., Auldridge, M., Taylor, M.G. and Klee, H.J. (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J. 40, 882892.
  • Stakhov, L.F., Ladygin, V.G. and Stakhova, L.N. (2002) Effect of ultraviolet C irradiation on folate and free amino acid contents in leaves of Pisum sativum. Biofizika, 47, 878885.
  • Stea, B., Halpern, R.M., Halpern, B.C. and Smith, R.A. (1980) Quantitative determination of pterins in biological fluids by high-performance liquid chromatography. J. Chromatogr. 188, 363375.
  • Strålsjö, L.M., Witthöft, C.M., Sjöholm, I.M. and Jägerstad, M.I. (2003) Folate content in strawberries (Fragaria × ananassa): effects of cultivar, ripeness, year of harvest, storage, and commercial processing. J. Agric. Food Chem. 51, 128133.
  • Suh, J.R., Herbig, A.K. and Stover, P.J. (2001) New perspectives on folate catabolism. Annu. Rev. Nutr. 21, 255282.
  • Swedberg, G., Castensson, S. and Sköld, O. (1979) Characterization of mutationally altered dihydropteroate synthase and its ability to form a sulfonamide-containing dihydrofolate analog. J. Bacteriol. 137, 129136.
  • Whiteley, J.M., Drais, J., Kirchner, J. and Huennekens, F.M. (1968) Synthesis of 2-amino-4-hydroxy-6-formyl-7,8-dihydropteridine and its identification as a degradation product of dihydrofolate. Arch. Biochem. Biophys. 126, 955957.
  • Winter, H., Robinson, D.G. and Heldt, H.W. (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta, 193, 530535.
  • Zheng, L.L., Lin, Y., Lin, S. and Cossins, E.A. (1992) The polyglutamate nature of plant folates. Phytochemistry, 31, 22772282.