• Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K. and Melzer, S. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 24, 591599.
  • Brizzard, B.L., Chubet, R.G. and Vizard, D.L. (1994) Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase using a novel monoclonal antibody and peptide elution. Biotechniques, 16, 730734.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • de Folter, S., Immink, R.G.H., Kieffer, M. et al. (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell, 17, 14241433.
  • Hajdukiewicz, P., Svab, Z. and Maliga, P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989994.
  • Helliwell, C.A., Chin-Atkins, A.N., Wilson, I.W., Dennis, E.S. and Chaudhury, A.M. (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell, 13, 21152125.
  • Helliwell, C.A., Wesley, S.V., Wielopolska, A.J. and Waterhouse, P.M. (2002) High throughput vectors for efficient gene silencing in plants. Funct. Plant Biol. 29, 12171225.
  • Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouravdov, A. and Coupland, G. (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21, 43274337.
  • Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 490, 525529.
  • Huang, H., Mizukami, Y., Hu, Y. and Ma, H. (1993) Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucleic Acids Res. 21, 47694776.
  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387405.
  • Koornneef, M., Blanketijn-de Vries, H., Hanhart, C., Soppe, W. and Peeters, T. (1994) The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J. 6, 911919.
  • Lee, I., Micheals, S.D., Masshardt, A.S. and Amasino, R.M. (1994) The late-flowering phenotype of FRIGIDA and LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis. Plant J. 6, 903909.
  • Lee, H., Suh, S.-S., Park, E., Cho, E., Ahn, J.H., Kim, S.-G., Lee, J.S., Kwon, Y.M. and Lee, I. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14, 23662376.
  • Lee, H., Habas, R. and Abate-Shen, C. (2004) Msx1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science, 304, 16751678.
  • Michaels, S.M. and Amasino, R.M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell, 11, 949956.
  • Michaels, S.D., Himelblau, E., Kim, S.Y., Schomburg, F.M. and Amasino, R.M. (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 137, 149156.
  • Moon, J., Suh, S.-S., Lee, H., Choi, K.-R., Hong, C.B., Paek, N.-C., Kim, S.-G. and Lee, I. (2003) The SOC1 MADS box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35, 613623.
  • Pařenicová, L., de Folter, S., Kieffer, M. et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell, 15, 15381551.
  • Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L. and Riechmann, J.L. (2001) Regulation of flowering in Arabidopsis by an FLC homologue. Plant Physiol. 126, 122132.
  • Ratcliffe, O.J., Kumimoto, R.W., Wong, B.J. and Riechmann, J.L. (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell, 15, 11591169.
  • Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. (1996) Dimerization specificity of Arabidopsis MADS domain homoetic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl Acad. Sci. USA, 93, 47934798.
  • Rouse, D.T., Sheldon, C.C., Bagnall, D.J., Peacock, W.J. and Dennis, E.S. (2002) FLC, a repressor of flowering, is regulated by genes in different inductive pathways. Plant J. 29, 183191.
  • Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J. and Dennis, E.S. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 11, 445458.
  • Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl Acad. Sci. USA, 97, 37533758.
  • Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordberg, M. and Dean, C. (2005) Role of FRIGIDA and FLC in determining variation in flowering time of Arabidopsis. Plant Physiol. 138, 11631173.
  • Shiraishi, H., Okada, K. and Shimura, Y. (1993) Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 4, 385398.
  • Shore, P. and Sharrocks, A.D. (1995) The MADS-box family of transcription factors. Eur. J. Biochem. 229, 113.
    Direct Link:
  • Tilly, J.J., Allen, D.W. and Jack, T. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development, 125, 16471657.
  • Wang, H., Tang, W., Zhu, C. and Perry, S. (2002) A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. Plant J. 32, 831843.