SEARCH

SEARCH BY CITATION

References

  • Allen, R.L., Bittner-Eddy, P.D., Grenvitte-Briggs, L.J., Meitz, J.C., Rehmany, A.P., Rose, L.E. and Beynon, J.L. (2004) Host–parasite coevolutionary conflict between Arabidopsis and downy mildew. Science, 306, 19571960.
  • Banerjee, D., Zhang, X. and Bent, A.F. (2001) The leucine-rich repeat domain can determine effective interaction between RPS2 and other host factors in Arabidopsis RPS2-mediated disease resistance. Genetics, 158, 439450.
  • Bergelson, J., Kreitman, M., Stahl, E.A. and Tian, D.C. (2001) Evolutionary dynamics of plant R-genes. Science, 292, 22812285.
  • Bieri, S., Mauch, S., Shen, Q.H. et al. (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell, 16, 34803495.
  • Bittner-Eddy, P.D., Crute, I.R., Holub, E.B. and Beynon, J.L. (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 21, 177188.
  • Briggle, L.W. and Sears, E.R. (1966) Linkage of resistance to Erysiphe graminis f. sp. tritici (Pm3) and hairy glume (Hg) on chromosome 1A of wheat. Crop Sci. 6, 559562.
  • Caicedo, A.L., Schaal, B.A. and Kunkel, B.N. (1999) Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 96, 302306.
  • Dawkins, R. and Krebs, J.R. (1979) Arms races between and within species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 205, 489511.
  • Dodds, P.N., Lawrence, G.J. and Ellis, J.G. (2001) Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell, 13, 163178.
  • Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Ayliffe, M.A. and Ellis, J.G. (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell, 16, 755768.
  • Douchkov, D., Nowara, D., Zierold, U. and Schweizer, P. (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol. Plant Microbe Interact. 18, 755761.
  • Ellis, J.G., Lawrence, G.J., Luck, J.E. and Dodds, P.N. (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell, 11, 495506.
  • Ellis, J., Dodds, P. and Pryor, T. (2000) Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3, 278284.
  • Feldman, M., Lupton, F.G.H. and Miller, T.E. (1995) Wheats. In Evolution of Crops, 2nd edn (Smartt, J. and Simmonds, N.W., eds). London: Longman Scientific, pp. 184192.
  • Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A. and Keller, B. (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc. Natl Acad. Sci. USA, 100, 1525315258.
  • Gaut, B.S., Morton, B.R., McCaig, B.C. and Clegg, M.T. (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA, 93, 1027410279.
  • Halterman, D.A. and Wise, R.P. (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J. 38, 215226.
  • Halterman, D., Zhou, F.S., Wei, F.S., Wise, R.P. and Schulze-Lefert, P. (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp hordei in barley and wheat. Plant J. 25, 335348.
  • Halterman, D.A., Wei, F. and Wise, R.P. (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol. 131, 558567.
  • Holub, E.B. (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat. Rev. Genet. 2, 516527.
  • Hsam, S.L.K. and Zeller, F.J. (2002) Breeding for powdery mildew resistance in common wheat (Triticum aestivum L.). In The Powdery Mildews. A Comprehensive Treatise (Bélanger, R.R., Bushnell, W.R., Dik, A.J. and Carver, T.L.W., eds). St Paul, MN: APS Press, pp. 219238.
  • Huang, L., Brooks, S.A., Li, W., Fellers, J.P., Trick, H.N. and Gill, B.S. (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 164, 655664.
  • Huang, X.Q., Hsam, S.L., Mohler, V., Roder, M.S. and Zeller, F.J. (2004) Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome, 47, 11301136.
  • Hwang, C.F. and Williamson, V.M. (2003) Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J. 34, 585593.
  • Isidore, E., Scherrer, B., Chalhoub, B., Feuillet, C. and Keller, B. (2005) Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res. 15, 526536.
  • Jones, D.A. and Jones, J.D.G. (1997) The role of leucine-rich repeat proteins in plant defences. Adv. Bot. Res. Incorp. Adv. Plant Pathol. 24, 89167.
  • Kruijt, M., Brandwagt, B.F. and De Wit, P.J. (2004) Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr9 responsiveness. Genetics, 168, 16551663.
  • Kuang, H., Woo, S.S., Meyers, B.C., Nevo, E. and Michelmore, R.W. (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell, 16, 28702894.
  • Lev-Yadun, S., Gopher, A. and Abbo, S. (2000) The cradle of agriculture. Science, 288, 16021603.
  • Mackey, D., Holt, B.F., 3rd, Wiig, A. and Dangl, J.L. (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 108, 743754.
  • McDowell, J.M., Dhandaydham, M., Long, T.A., Aarts, M.G.M., Goff, S., Holub, E.B. and Dangl, J.L. (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell, 10, 18611874.
  • Meyers, B.C., Kozik, A., Griego, A., Kuang, H. and Michelmore, R.W. (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell, 15, 809834.
  • Michelmore, R.W. and Meyers, B.C. (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8, 11131130.
  • Moffett, P., Farnham, G., Peart, J. and Baulcombe, D.C. (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J. 21, 45114519.
  • Ozkan, H., Brandolini, A., Pozzi, C., Effgen, S., Wunder, J. and Salamini, F. (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor. Appl. Genet. 110, 10521060.
  • Parniske, M., HammondKosack, K.E., Golstein, C., Thomas, C.M., Jones, D.A., Harrison, K., Wulff, B.B.H. and Jones, J.D.G. (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell, 91, 821832.
  • Rehmany, A.P., Gordon, A., Rose, L.E., Allen, R.L., Armstrong, M.R., Whisson, S.C., Kamoun, S., Tyler, B.M., Birch, P.R.J. and Beynon, J.L. (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell, 17, 18391850.
  • Rose, L.E., Bittner-Eddy, P.D., Langley, C.H., Holub, E.B., Michelmore, R.W. and Beynon, J.L. (2004) The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics, 166, 15171527.
  • Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X. and Rozas, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 24962497.
  • Schweizer, P., Christoffel, A. and Dudler, R. (1999) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J. 20, 541552.
  • Shen, Q.H., Zhou, F., Bieri, S., Haizel, T., Shirasu, K. and Schulze-Lefert, P. (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell, 15, 732744.
  • Srichumpa, P., Brunner, S., Keller, B. and Yahiaoui, N. (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885895.
  • Stahl, E.A., Dwyer, G., Mauricio, R., Kreitman, M. and Bergelson, J. (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature, 400, 667671.
  • Swofford, D.L. (2000) paup*: Phylogenetic Analysis Using Parsimony, version 4.0b. Sunderland, MA: Sinauer Associates.
  • Tajima, F. (1983) Evolutionary relationship of DNA-sequences in finite populations. Genetics, 105, 437460.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997) The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 48764882.
  • Van der Biezen, E.A. and Jones, J.D. (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23, 454456.
  • Van der Hoorn, R.A., De Wit, P.J. and Joosten, M.H. (2002) Balancing selection favors guarding resistance proteins. Trends Plant Sci. 7, 6771.
  • Warren, R.F., Henk, A., Mowery, P., Holub, E. and Innes, R.W. (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell, 10, 14391452.
  • Wei, F., Gobelman-Werner, K., Morroll, S.M., Kurth, J., Mao, L., Wing, R., Leister, D., Schulze-Lefert, P. and Wise, R.P. (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics, 153, 19291948.
  • Wei, F., Wing, R.A. and Wise, R.P. (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell, 14, 19031917.
  • Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528538.
  • Zeller, F.J., Lutz, J. and Stephan, U. (1993) Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) 1. Mlk and other alleles at the Pm3 locus. Euphytica, 68, 223229.
  • Zhou, F.S., Kurth, J.C., Wei, F.S., Elliott, C., Vale, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R. and Schulze-Lefert, P. (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell, 13, 337350.