SEARCH

SEARCH BY CITATION

References

  • Abel, S., Ticconi, C.A. and Delatorre, C.A. (2002) Phosphate sensing in higher plants. Physiol. Plant. 115, 18.
  • Aloni, R., Schwalm, K., Langhans, M. and Ullrich, C.I. (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta, 216, 841853.
  • Andersson, M.X., Stridh, M.H., Larsson, K.E., Liljenberg, C. and Sandelius, A.S. (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett. 537, 128132.
  • Andersson, M.X., Kjellberg, J.M. and Sandelius, A.S. (2004) The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope. Biochim. Biophys. Acta, 1684, 4653.
  • Avsian-Kretchmer, O., Cheng, J.C., Chen, L., Moctezuma, E. and Sung, Z.R. (2002) Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol. 130, 199209.
  • Awai, K., Maréchal, E., Block, M.A., Brun, D., Masuda, T., Shimada, H., Takamiya, K., Ohta, H. and Joyard, J. (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 98, 1096010965.
  • Benning, C. and Ohta, H. (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280, 23972400.
  • Bensadoun, A. and Weinstein, D. (1976) Assay of proteins in the presence of interfering materials. Anal. Biochem. 70, 241250.
  • Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911917.
  • Block, M.A., Dorne, A.J., Joyard, J. and Douce, R. (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J. Biol. Chem. 258, 1328113286.
  • Borch, K., Bouma, T.J., Lynch, J.P. and Brown, K.M. (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ. 22, 425431.
  • Bürkle, L., Cedzich, A., Döpke, C., Stransky, H., Okumoto, S., Gillissen, B., Kühn, C. and Frommer, W.B. (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 34, 1326.
  • Chiou, T.-J., Aung, K., Lin, S.-I., Wu, C.-C., Chiang, S.-F. and Su, C.-L. (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell, 18, 412421.
  • Dörmann, P. and Benning, C. (2002) Galactolipids rule in seed plants. Trends Plant Sci. 7, 112118.
  • Dörmann, P., Hoffmann-Benning, S., Balbo, I. and Benning, C. (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell, 7, 18011810.
  • Essigmann, B., Güler, S., Narang, R.A., Linke, D. and Benning, C. (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 95, 19501955.
  • Franco-Zorrilla, J.M., Martin, A.C., Solano, R., Rubio, V., Leyva, A. and Paz-Ares, J. (2002) Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. Plant J. 32, 353360.
  • Franco-Zorrilla, J.M., González, E., Bustos, R., Linhares, F., Leyva, A. and Paz-Ares, J. (2004) The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot. 55, 285293.
  • Fujii, H., Chiou, T.-J., Lin, S.-I., Aung, K. and Zhu, J.-K. (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 20382043.
  • Galatis, B. (1988) Microtubules and epithem-cell morphogenesis in hydathodes of Pilea cadierei. Planta, 176, 287297.
  • Geldner, N., Friml, J., Stierhof, Y.D., Jürgens, G. and Palme, K. (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413, 425428.
  • Härtel, H. and Benning, C. (2000) Can digalactosyldiacylglycerol substitute for phosphatidylcholine upon phosphate deprivation in leaves and roots of Arabidopsis? Biochem. Soc. Trans. 28, 729732.
  • Härtel, H., Dormann, P. and Benning, C. (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl Acad. Sci. USA 97, 1064910654.
  • Hobbie, L. and Estelle, M. (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7, 211220.
  • Horgan, J.M. and Wareing, P.F. (1980) Cytokinins and the growth responses of seedlings of Betula pendula Roth. & Acer pseudoplatanus L. to nitrogen and phosphorus deficiency. J. Exp. Bot. 31, 525532.
  • Jones, A.M. (1998) Auxin transport: down and out and up again. Science, 282, 22012203.
  • Jouhet, J., Maréchal, E., Bligny, R., Joyard, J. and Block, M.A. (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett. 544, 6368.
  • Jouhet, J., Maréchal, E., Baldan, B., Bligny, R., Joyard, J. and Block, M.A. (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J. Cell Biol. 167, 863874.
  • Kelly, A.A. and Dörmann, P. (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chem. 277, 11661173.
  • Kelly, A.A., Froehlich, J.E. and Dörmann, P. (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell, 15, 26942706.
  • Kobayashi, K., Awai, K., Takamiya, K. and Ohta, H. (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol. 134, 640648.
  • Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S. and Grignon, C. (1996) Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 9, 195203.
  • López-Bucio, J., Cruz-Ramírez, A. and Herrera-Estrella, L. (2003) The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280287.
  • López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Pérez-Torres, A., Rampey, R.A., Bartel, B. and Herrera-Estrella, L. (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol. 137, 681691.
  • Ma, Z., Baskin, T.I., Brown, K.M. and Lynch, J.P. (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol. 131, 13811390.
  • Martín, A.C., Del Pozo, J.C., Iglesias, J., Rubio, V., Solano, R., De La Peña, A., Leyva, A. and Paz-Ares, J. (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J. 24, 559567.
  • Miège, C., Maréchal, E., Shimojima, M., Awai, K., Block, M.A., Ohta, H., Takamiya, K., Douce, R. and Joyard, J. (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur. J. Biochem. 265, 9901001.
  • Miura, K., Rus, A., Sharkhuu, A. et al. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl Acad. Sci. USA, 102, 77607765.
  • Mudge, S.R., Rae, A.L., Diatloff, E. and Smith, F.W. (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31, 341353.
  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15, 473497.
  • Nacry, P., Canivenc, G., Muller, B., Azmi, A., Onckelen, H.V., Rossignol, M. and Doumas, P. (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 138, 20612074.
  • Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K. and Ohta, H. (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J. Biol. Chem. 280, 74697476.
  • Ohta, H., Awai, K. and Takamiya, K. (2000) Glyceroglycolipids of photosynthetic organisms – their biosynthesis and evolutionary origin. Trends Glycosci. Glycotechnol. 12, 241253.
  • Oono, Y., Ooura, C., Rahman, A., Aspuria, E.T., Hayashi, K., Tanaka, A. and Uchimiya, H. (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol. 133, 11351147.
  • Rubio, V., Linhares, F., Solano, R., Martín, A.C., Iglesias, J., Leyva, A. and Paz-Ares, J. (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 15, 21222133.
  • Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G. and Estelle, M. (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell, 9, 745757.
  • Salama, A.M.S.E.-D. and Wareing, P.F. (1979) Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annus L.). J. Exp. Bot. 30, 971981.
  • Shibagaki, N., Rose, A., McDermott, J.P., Fujiwara, T., Hayashi, H., Yoneyama, T. and Davies, J.P. (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 29, 475486.
  • Taki, N., Sasaki-Sekimoto, Y., Obayashi, T. et al. (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 139, 12681283.
  • Ticconi, C.A. and Abel, S. (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci. 9, 548555.
  • Ticconi, C.A., Delatorre, C.A. and Abel, S. (2001) Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol. 127, 963972.
  • Varadarajan, D.K., Karthikeyan, A.S., Matilda, P.D. and Raghothama, K.G. (2002) Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol. 129, 12321240.
  • Vogel, J.P., Schuerman, P., Woeste, K., Brandstatter, I. and Kieber, J.J. (1998) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics, 149, 417427.
  • Wang, Y., Ribot, C., Rezzonico, E. and Poirier, Y. (2004) Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol. 135, 400411.
  • Woeste, K.E., Vogel, J.P. and Kieber, J.J. (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol. Plant. 105, 478484.
  • Yamamoto, M. and Yamamoto, K.T. (1999) Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4. J. Plant Res. 112, 391396.
  • Yamaryo, Y., Kanai, D., Awai, K., Shimojima, M., Masuda, T., Shimada, H., Takamiya, K. and Ohta, H. (2003) Light and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. Plant Cell Physiol. 44, 844855.
  • Yu, Y.-B. and Yang, S.F. (1979) Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiol. 64, 10741077.
  • Zhang, Y.J., Lynch, J.P. and Brown, K.M. (2003) Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J. Exp. Bot. 54, 23512361.