SEARCH

SEARCH BY CITATION

References

  • Banfalvi, Z., Nieuwkoop, A., Schell, M., Besl, L. and Stacey, G. (1988) Regulation of nod gene expression in Bradyrhizobium japonicum. Mol. Gen. Genet. 214, 420424.
  • Begum, A.A., Leibovitch, S., Migner, P. and Zhang, F. (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J. Exp. Bot. 52, 15371543.
  • Bovy, A., De Vos, R., Kemper, M. et al. (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell, 14, 25092526.
  • Brown, D.E., Rashotte, A.M., Murphy, A.S., Normanly, J., Tague, B.W., Peer, W.A., Taiz, L. and Muday, G.K. (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126, 524535.
  • Carlson, R.W., Sanjuan, J., Bhat, U.R., Glushka, J., Spaink, H.P., Wijfjes, A.H., Van Brussel, A.A., Stokkermans, T.J., Peters, N.K. and Stacey, G. (1993) The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type I and II strains of Bradyrhizobium japonicum. J. Biol. Chem. 268, 1837218381.
  • Carroll, B.J., McNeil, D.L. and Gresshoff, P.M. (1985) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc. Natl Acad. Sci. USA, 82, 41624166.
  • Cho, M.J. and Harper, J.E. (1991a) Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots. Plant Physiol. 95, 435442.
  • Cho, M.J. and Harper, J.E. (1991b) Root isoflavonoid response to grafting between wild-type and nodulation-mutant soybean plants. Plant Physiol. 96, 12771282.
  • Collier, R., Fuchs, B., Walter, N., Lutke, K. and Taylor, C. (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J. 43, 449457.
  • Geurts, R. and Bisseling, T. (2002) Rhizobium nod factor perception and signalling. Plant Cell, 14, S239S249.
  • Graham, T.L. and Graham, M.Y. (1996) Signaling in soybean phenylpropanoid responses (dissection of primary, secondary, and conditioning effects of light, wounding, and elicitor treatments). Plant Physiol. 110, 11231133.
  • Gresshoff, P.M. (1993) Molecular genetic analysis of nodulation genes in soybean. Plant Breed. Rev. 11, 275318.
  • Hungria, M., Johnston, A.W. and Phillips, D.A. (1992) Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol. Plant–Microbe Interact. 5, 199203.
  • Ip, H., D'Aoust, F., Begum, A.A., Zhang, H., Smith, D.L., Driscoll, B.T. and Charles, T.C. (2001) Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation. Mol. Plant–Microbe Interact. 14, 14041410.
  • Jackson, D. (1991) In-situ hybridisation in plants. In Molecular Plant Pathology: A Practical Approach (Bowles, D.J., Gurr, S.J. and McPherson, M., eds). Oxford: Oxford University Press, pp. 163174.
  • Jacobs, M. and Rubery, P.H. (1988) Naturally occurring auxin transport regulators. Science, 241, 346349.
  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J. 6, 39013907.
  • Jung, W., Yu, O., Lau, S.M., O'Keefe, D.P., Odell, J., Fader, G. and McGonigle, B. (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnol. 18, 208212.
  • Kape, R., Parniske, M., Brandt, S. and Werner, D. (1992) Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl. Environ. Microbiol. 58, 17051710.
  • Kijne, J.W. (1992) The Rhizobium infection process. In Biological Nitrogen Fixation (Stacey, G., Burris, R. and Evans, H., eds). New York, London: Chapman & Hall, pp. 349398.
  • Kosslak, R.M., Joshi, R.S., Bowen, B.A., Paaren, H.E. and Appelbaum, E.R. (1990) Strain-specific inhibition of nod gene induction in Bradyrhizobium japonicum by flavonoid compounds. Appl. Environ. Microbiol. 56, 13331341.
  • Loh, J.T., Ho, S.C., Wang, J.L. and Schindler, M. (1994) Carbohydrate binding activities of Bradyrhizobium japonicum: IV. Effect of lactose and flavones on the expression of the lectin, BJ38. Glycoconjugate J. 11, 363370.
  • Lohar, D.P. and VandenBosch, K.A. (2005) Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity. J. Exp. Bot. 56, 16431650.
  • Madsen, E.B., Madsen, L.H., Radutoiu, S. et al. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 425, 637640.
  • Mathesius, U. (2001) Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52, 419426.
  • Mathesius, U., Schlaman, H.R., Spaink, H.P., Of Sautter, C., Rolfe, B.G. and Djordjevic, M.A. (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14, 2334.
  • Mathesius, U., Charon, C., Rolfe, B.G., Kondorosi, A. and Crespi, M. (2000a) Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Mol. Plant–Microbe Interact. 13, 617628.
  • Mathesius, U., Weinman, J.J., Rolfe, B.G. and Djordjevic, M.A. (2000b) Rhizobia can induce nodules in white clover by ‘hijacking’ mature cortical cells activated during lateral root development. Mol. Plant–Microbe Interact. 13, 170182.
  • Murphy, A., Peer, W.A. and Taiz, L. (2000) Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta, 211, 315324.
  • Van Noorden, G.E., Ross, J.J., Reid, J.B., Rolfe, B.G. and Mathesius, U. (2006) Defective long distance auxin transport regulation in the Medicago truncatula sunn mutant. Plant Physiol. 140, 14941506.
  • Pacios-Bras, C., Schlaman, H.R., Boot, K., Admiraal, P., Langerak, J.M., Stougaard, J. and Spaink, H.P. (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol. Biol. 52, 11691180.
  • Pankhurst, C.E. and Biggs, D.R. (1980) Sensitivity of Rhizobium to selected isoflavonoids. Can. J. Microbiol. 26, 542545.
  • Parniske, M. and Downie, J.A. (2003) Plant biology: locks, keys and symbioses. Nature, 425, 569570.
  • Parniske, M., Ahlborn, B. and Werner, D. (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J. Bacteriol. 173, 34323439.
  • Peer, W.A., Bandyopadhyay, A., Blakeslee, J.J., Makam, S.N., Chen, R.J., Masson, P.H. and Murphy, A.S. (2004) Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell, 16, 18981911.
  • Peters, N.K., Frost, J.W. and Long, S.R. (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science, 233, 977980.
  • Phillips, D.A., Dakora, F.D., Sande, E., Joseph, C.M. and Zon, J. (1994) Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts. Plant Soil, 161, 6980.
  • Recourt, K., Van Tunen, A.J., Mur, L.A., Van Brussel, A.A., Lugtenberg, B.J. and Kijne, J.W. (1992) Activation of flavonoid biosynthesis in roots of Vicia sativa subsp. nigra plants by inoculation with Rhizobium leguminosarum biovar viciae. Plant Mol. Biol. 19, 411420.
  • Van De Sande, K. and Bisseling, T. (1997) Signalling in symbiotic root nodule formation. Essays Biochem. 32, 127142.
  • Smit, G., Puvanesarajah, V., Carlson, R.W., Barbour, W.M. and Stacey, G. (1992) Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J. Biol. Chem. 267, 310318.
  • Steele, C.L., Gijzen, M., Qutob, D. and Dixon, R.A. (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 367, 146150.
  • Stokkermans, T.J., Ikeshita, S., Cohn, J., Carlson, R.W., Stacey, G., Ogawa, T. and Peters, N.K. (1995) Structural requirements of synthetic and natural product lipo-chitin oligosaccharides for induction of nodule primordia on Glycine soja. Plant Physiol. 108, 15871595.
  • Subramanian, S., Hu, X., Lu, G., Odelland, J.T. and Yu, O. (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol. Biol. 54, 623639.
  • Subramanian, S., Graham, M.Y., Yu, O. and Graham, T.L. (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 137, 13451353.
  • Ulmasov, T., Murfett, J., Hagen, G. and Guilfoyle, T.J. (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell, 9, 19631971.
  • Wasson, A. P., Pellerone, A.I. and Mathesius, U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell, 18, 16171629.
  • Welle, R., Schroder, G., Schiltz, E., Grisebach, H. and Schroder, J. (1991) Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63). Eur. J. Biochem. 196, 423430.
  • Yu, O., Shi, J., Hession, A.O., Maxwell, C.A., McGonigle, B. and Odell, J.T. (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry, 63, 753763.
  • Yuen, J.P.Y., Cassini, S.T., DeOliveira, T.T., Nagem, T.J. and Stacey, G. (1995) Xanthone induction of nod gene expression in Bradyrhizobium japonicum. Symbiosis, 19, 131140.