SEARCH

SEARCH BY CITATION

Keywords:

  • seed dormancy;
  • after-ripening;
  • reactive oxygen species;
  • proteome analysis;
  • carbonylation;
  • sunflower

Summary

At harvest, sunflower (Helianthus annuus L.) seeds are dormant and unable to germinate at temperatures below 15°C. Seed storage in the dry state, known as after-ripening, is associated with an alleviation of embryonic dormancy allowing subsequent germination at suboptimal temperatures. To identify the process by which dormancy is broken during after-ripening, we focused on the role of reactive oxygen species (ROS) in this phenomenon. After-ripening entailed a progressive accumulation of ROS, namely superoxide anions and hydrogen peroxide, in cells of embryonic axes. This accumulation, which was investigated at the cellular level by electron microscopy, occurred concomitantly with lipid peroxidation and oxidation (carbonylation) of specific embryo proteins. Incubation of dormant seeds for 3 h in the presence of hydrogen cyanide (a compound that breaks dormancy) or methylviologen (a ROS-generating compound) also released dormancy and caused the oxidation of a specific set of embryo proteins. From these observations, we propose a novel mechanism for seed dormancy alleviation. This mechanism involves ROS production and targeted changes in protein carbonylation patterns.