SEARCH

SEARCH BY CITATION

References

  • Akkopru, A. and Demir, S. (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153, 544550.
  • Alexander, T., Meier, R., Toth, R. and Weber, H.C. (1988) Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytol. 110, 363370.
  • Ames, B.N. (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol. 8, 115118.
  • Ane, J.-M., Kiss, G.B., Riely, B.K. et al. (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science, 303, 13641367.
  • Bécard, G. and Fortin, J.A. (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108, 211218.
  • Berta, G., Sampo, S., Gamalero, E., Massa, N. and Lemanceau, P. (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur. J. Plant Pathol. 111, 279288.
  • Bonfante-Fasolo, P. (1984) Anatomy and morphology of VA mycorrhizae. In VA Mycorrhizae (Powell, C.L. and Bagyaraj, D.J., eds). Boca Raton, FL: CRC Press, pp. 533.
  • Bostock, R.M. (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545580.
  • Braunberger, P.G., Miller, M.H. and Peterson, R.L. (1991) Effect of phosphorus nutrition on morphological characteristics of vesicular–arbuscular mycorrhizal colonization of maize. New Phytol. 119, 107113.
  • Brechenmacher, L., Weidmann, S., Van Tuinen, D., Chatagnier, O., Gianinazzi, S., Franken, P. and Gianinazzi-Pearson, V. (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatulaGlomus mosseae interactions. Mycorrhiza, 14, 253262.
  • Burleigh, S.H. and Harrison, M.J. (1998) Mt4, a phosphorus starvation-inducible cDNA from Medicago truncatula, which is down-regulated both by phosphorus fertilization and arbuscular-mycorrhizal colonization. In Phosphorous in Plant Biology: Regulatory Roles in Molecular Cellular, Organismic, and Ecosystem Processes (Lynch, J.P. and Deikman, J., eds). Rockville, MD: American Society of Plant Physiologists, pp. 359360.
  • Cartieaux, F., Thibaud, M.C., Zimmerli, L., Lessard, P., Sarrobert, C., David, P., Gerbaud, A., Robaglia, C., Somerville, S. and Nussaume, L. (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J. 36, 177188.
  • Cordier, C., Pozo, M.J., Barea, J.M., Gianinazzi, S. and Gianinazzi-Pearson, V. (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Interact. 11, 10171028.
  • Corradi, N., Hijri, M., Fumagalli, L. and Sanders, I.R. (2004) Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota). Fung. Genet. Biol. 41, 10371045.
  • Durrant, W.E. and Dong, X. (2004) Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185209.
  • Durrant, W.E., Rowland, O., Piedras, P., Hammond-Kosack, K.E. and Jones, J.D.G. (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell, 12, 963977.
  • Endre, G., Kereszt, A., Kevel, Z., Mihacea, S., Kaló, P. and Kiss, G. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature, 417, 962966.
  • Frenzel, A., Manthey, K., Perlick, A.M., Meyer, F., Puhler, A., Kuster, H. and Krajinski, F. (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol. Plant Microbe Interact. 18, 771782.
  • Gamas, P., De Billy, F. and Truchet, G. (1998) Symbiosis-specific expression of two Medicago truncatula nodulin genes, MtN1 and MtN13, encoding products homologous to plant defense proteins. Mol. Plant Microbe Interact. 11, 393403.
  • Gianinazzi-Pearson, V. (1996) Plant cell responses to arbuscular myorrhiza fungi: getting to the roots of the symbiosis. Plant Cell, 8, 18711883.
  • Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., Arango, M. and Gianinazzi, S. (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta, 211, 609613.
  • Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205227.
  • Graham, J.H., Leonard, R.T. and Menge, J.A. (1982) Interaction of light intensity and soil temperature with phosphorus inhibition of vesicular–arbuscular mycorrhiza formation. New Phytol. 91, 683690.
  • Guimil, S., Chang, H.-S., Zhu, T. et al. (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl Acad. Sci. USA, 102, 80668070.
  • Hagihara, T., Hashi, M., Takeuchi, Y. and Yamaoka, N. (2004) Cloning of soybean genes induced during hypersensitive cell death caused by syringolide elicitor. Planta, 218, 606614.
  • Hanks, J.N., Synder, A.K., Graham, M.A., Shah, R.K., Blaylock, L.A., Harrison, M.J. and Shah, D.M. (2005) Defensin gene family in Medicago truncatula: structure, expression and induction by signal molecules. Plant Mol. Biol. 58, 385399.
  • Harrison, M.J. (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59, 1942.
  • Harrison, M.J. and Dixon, R.A. (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular–arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol. Plant Microbe Interact. 6, 643654.
  • Harrison, M.J. and Dixon, R.A. (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J. 6, 920.
  • Harrison, M.J., Dewbre, G.R. and Liu, J. (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 14, 24132429.
  • Hohnjec, N., Vieweg, M.F., Puhler, A., Becker, A. and Kuster, H. (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 137, 12831301.
  • Hohnjec, N., Henckel, K., Bekel, T., Gouzy, J., Dondrup, M., Goesmann, A. and Kuster, H. (2006) Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula. Funct. Plant Biol. 33, 737748.
  • Imaizumi-Anraku, H., Takeda, N., Charpentier, M. et al. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 433, 527531.
  • Ivashuta, S., Liu, J., Liu, J., Lohar, D.P., Haridas, S., Bucciarelli, B., VandenBosch, K.A., Vance, C.P., Harrison, M.J. and Gantt, J.S. (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell, 17, 29112921.
  • Journet, E.P., Van Tuinen, D., Gouzy, J. et al. (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res. 30, 55795592.
  • Kanamori, N., Madsen, L.H., Radutoiu, S. et al. (2006) From The Cover: A nucleoporin is required fo induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. PNAS, 103, 359364.
  • Kuster, H., Hohnjec, N., Krajinski, F. et al. (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J. Biotechnol. 108, 95113.
  • Levy, J., Bres, C., Geurts, R. et al. (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 303, 13611364.
  • Li, H.-Y., Yang, G.-D., Shu, H.-R., Yang, Y.-T., Ye, B.-X., Nishida, I. and Zheng, C.-C. (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol. 47, 154163.
  • Liu, J., Blaylock, L., Endre, G., Cho, J., Town, C.D., VandenBosch, K. and Harrison, M.J. (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell, 15, 21062123.
  • Liu, J., Blaylock, L. and Harrison, M.J. (2004) cDNA arrays as tools to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Can. J. Bot. 82, 11771185.
  • Maldonado-Mendoza, I.E., Dewbre, G.R., Blaylock, L. and Harrison, M.J. (2005) Expression of a xyloglucan endotransglucosylase/hydrolase gene, Mt-XTH1, from Medicago truncatula is induced systemically in mycorrhizal roots. Gene, 345, 191197.
  • Manthey, K., Krajinski, F., Hohnjec, N., Firnhaber, C., Puhler, A., Perlick, A.M. and Kuster, H. (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol. Plant Microbe Interact. 17, 10631077.
  • McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L. and Swan, J.A. (1990) A new method that gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol. 115, 495501.
  • Menge, J.A., Steirle, D., Bagyaraj, D.J., Johnson, E.L.V. and Leonard, R.T. (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80, 575578.
  • Mirouze, M., Sels, J., Richard, O. et al. (2006) A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J. 47, 329342.
  • Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E.D. and Long, S.R. (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc. Natl Acad. Sci. USA, 101, 47014705.
  • Parniske, M. (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 7, 414421.
  • Paszkowski, U. (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr. Opin. Plant Biol. 9, 364370.
  • Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9), e45.
  • Pieterse, C., Van Wees, S., Hoffland, E., Van Pelt, J.A. and Van Loon, L.C. (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell, 8, 12251237.
  • Pozo, M.J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J.M. and Azcon-Aguilar, C. (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53, 525534.
  • Sanchez, L., Weidmann, S., Arnould, C., Bernard, A.R., Gianinazzi, S. and Gianinazzi-Pearson, V. (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol. 139, 10651077.
  • Sanders, F.E. (1974) The effect of foliar-applied phosphate on the mycorrhizal infections of onion roots. In Endomycorrhizas (Sanders, F.E., Mosse, B. and Tinker, P.B., eds). University of Leeds: Academic Press, London, pp. 261–277.
  • Schnabel, E., Journet, E.P., De Carvalho-Niebel, F., Duc, G. and Frugoli, J. (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol. Biol. 58, 809822.
  • Schwab, S.M., Menge, J.A. and Leonard, R.T. (1983) Comparison of stages of vesicular–arbuscular mycorrhiza formation in sudangrass grown at two levels of phosphorus nutrition. Am. J. Bot. 70, 12251232.
  • Schwab, S.M., Menge, J.A. and Tinker, P.B. (1991) Regulation of nutrient transfer between host and fungus in vesicular–arbuscular mycorrhizas. New Phytol. 117, 387398.
  • Schwarzott, D., Walker, C. and Schüßler, A. (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol. Phylogenet. Evol. 21, 190197.
  • Searle, I.R., Men, A.E., Laniya, T.S., Buzas, D.M., Iturbe-Ormaetxe, I., Carroll, B.J. and Gresshoff, P.M. (2002) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299, 110.
  • Shaul, O., Galili, S., Volpin, H., Ginzberg, I., Elad, Y., Chet, I. and Kapulnik, Y. (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol. Plant Microbe Interact. 12, 10001007.
  • Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbiosis. San Diego, CA: Academic Press, Inc.
  • Smith, F.A. and Smith, S.E. (1989) Membrane transport at the biotrophic interface: an overview. Aust. J. Plant Physiol. 16, 3343.
  • Smith, S.E., Smith, F.A. and Jakobsen, I. (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162, 511524.
  • Spelbrink, R.G., Dilmac, N., Allen, A., Smith, T.J., Shah, D.M. and Hockerman, G.H. (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol. 135, 20552067.
  • St-Arnaud, M., Hamel, C., Vimard, B., Caron, M. and Fortin, J.A. (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100, 328332.
  • Stracke, S., Kistner, C., Yoshida, S. et al. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 417, 959962.
  • Terras, F.R.G., Eggermont, K., Kovaleva, V. et al. (1995) Small cysteine-rich antifungal proteins from radish – their role in host-defense. Plant Cell, 7, 573588.
  • Thomson, B.D., Robson, A.D. and Abbott, L.K. (1991) Soil mediated effects of phosphorus supply on the formation of mycorrhizas by Scutellispora calospora (Nicol. & Gerd.) Walker & Sanders on subterranean clover. New Phytol. 118, 463469.
  • Timmusk, S. and Wagner, E.G.H. (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12, 951959.
  • Vierheilig, H. (2004) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J. Plant Physiol. 161, 339341.
  • Vierheilig, H., Garcia-Garrido, J.M., Wyss, U. and Piche, Y. (2000) Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol. Biochem. 32, 589595.
  • Walker, C. and Schussler, A. (2004) Nomenclatural clarification and new taxa in the Glomeromycota. Mycol. Res. 108, 981982.
  • Walker, C., Blaszowski, L., Schwarzott, D. and Schussler, A. (2004) Germannia gen. nov., a genus Glomeromycota. Mycol. Res. 108, 707718.
  • Weidmann, S., Sanchez-Calderon, L., Descombin, J., Chatagnier, O., Gianinazzi, S. and Gianinazzi-Pearson, V. (2004) Fungal elicitation of signal transduction related plant genes precedes mycorrhiza establishment and requires the DMI 3 gene in Medicago truncatula. Mol. Plant Microbe Interact. 17, 13851393.
  • Wulf, A., Manthey, K., Doll, J., Perlick, A.M., Linke, B., Bekel, T., Meyer, F., Franken, P., Kuster, H. and Krajinski, F. (2003) Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol. Plant Microbe Interact. 16, 306314.
  • Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J. and Speed, T.P. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15.
  • Yang, S.H., Berberich, T., Miyazaki, A., Sano, H. and Kusano, T. (2003) Ntdin, a tobacco senescence-associated gene, is involved in molybdenum cofactor biosynthesis. Plant Cell Physiol. 44, 10371044.
  • Zeng, L.R., Vega-Sanchez, M.E., Zhu, T. and Wang, G.L. (2006) Ubiquitination-mediated protein degradation and modification: an emerging theme in plant–microbe interactions. Cell Res. 16, 413426.