SEARCH

SEARCH BY CITATION

References

  • Amir, R. and Tabe, L. (2006) Molecular approaches to improving plant methionine content. In Plant Genetic Engineering Vol 8: Metabolic Engineering and Molecular Farming II (Jaiwal, P.K. and Singh, R.P., eds). Huston, Texas: Studium Press LLC, pp. 126.
  • Amir, R., Hacham, Y. and Galili, G. (2002) Cystathionine γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci. 7, 153156.
  • Avraham, T. and Amir, R. (2005) Methionine and threonine regulate the branching point of their biosynthesis pathways and thus controlling the level of each other. Transgneic Res. 14, 299311.
  • Azevedo, R.A., Lancien, M. and Lea, P.J. (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids, 30, 143162.
  • Bartlem, D., Lambein, I., Okamoto, T., Itaya, A., Uda, Y., Kijima, Y., Tamaki, Y., Nambara, E. and Naito, S. (2000) Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol. 123, 101110.
  • Chiba, Y., Ishikawa, M., Kijima, F., Tyson, R.H., Kim, J., Yamamoto, A., Nambara, E., Leustek, T., Wallsgrove, R.M. and Naito, S. (1999) Evidence for autoregulation of cystathionine gamma-synthase mRNA stability in Arabidopsis. Science, 286, 13711374.
  • Chiba, Y., Sakurai, R., Yoshino, M., Ominato, K., Ishikawa, M., Onouchi, H. and Naito, S. (2003) S-adenosyl-l-methionine is an effector in the posttranscriptional autoregulation of the cystathionine gamma-synthase gene in Arabidopsis. Proc. Natl Acad. Sci. USA, 100, 1022510230.
  • Coruzzi, G. and Last, T.R. (2000) Amino acids. In Biochemistry and Molecular Biology of Plants (Buchanan, B.B., Gruissem, W. and Jones, R.L., eds). Rockville, MD: American Society of Plant Physiologists, pp. 358410.
  • Curien, G., Ravanel, S. and Dumas, R. (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur. J. Biochem. 270, 46154627.
  • Curien, G., Ravanel, S., Robert, M. and Dumas, R. (2005) Identification of six novel allosteric effectors of Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase isoforms. Physiological context sets the specificity. J. Biol. Chem. 280, 4117841183.
  • Droux, M., Gakiere, B., Denis, L., Ravanel, S., Tabe, L., Lappartient, A.G. and Job, D. (2000) Methionine biosynthesis in plants: biochemical and regulatory aspects. In Sulfur Nutrition and Sulfur Assimilation in Higher Plants (Brunold, C., ed). Bern, Switzerland: Paul Haupt, pp. 7392.
  • Frankard, V, Ghislain., M. Negrutiu, I. and Jacobs, M. (1991) High threonine producer mutant of Nicotiana sylvestris (Spegazzini. and Comes). Theor. Appl. Genet. 82, 273282.
  • Galili, G. (1995) Regulation of lysine and threonine synthesis. Plant Cell, 7, 899906.
  • Galili, S., Guenoune, D., Wilinger, S. and Kapulnic, Y. (2000) Enhanced levels of free and protein bound threonine in transgenic alfalfa (Medicago sativa L.) expressing a bacterial feed back insensitive aspartate kinase gene. Transgenic Res. 9, 137144.
  • Galili, G., Amir, R., Hoefgen, R. and Hesse, H. (2005) Improving the levels of essential amino acids and sulfur metabolites in plants. Biol. Chem. 386, 817831.
  • Hacham, Y., Avraham, T. and Amir, R. (2002) The N-terminal region of Arabidopsis cystathionine gamma synthase plays an important role in methionine metabolism. Plant Physiol. 128, 454462.
  • Hacham, Y., Schuster, G. and Amir, R. (2006) An in vivo internal deletion in the N-terminus of cystathionine γ-synthase in Arabidopsis results with decreased modulation of expression by methionine. Plant J. 45, 955967.
  • Hacham, Y., Song, L., Schuster, G. and Amir, R. (2007) Lysine enhances methionine content by modulating the expression of S-adenosylmethionine synthase. Plant J. 51, 850861.
  • Hesse, H. and Hoefgen, R. (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci. 8, 259262.
  • Hesse, H., Kreft, O., Maimann, S., Zeh, M. and Hoefgen, R. (2004) Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 55, 17991808.
  • Karchi, H., Shaul, O. and Galili, G. (1993) Seed specific expression of a bacterial desensitized aspartate kinase increases the production of seed threonine and methionine in transgenic tobacco. Plant J. 3, 721727.
  • Kim, J., Lee, M., Chalam, R., Martin, M., Leustek, T. and Boerjan, W. (2002) Constitutive overexpression of cystathionine g-synthase in Arabidopsis thaliana leads to accumulation of soluble methionine and S-methylmethionine. Plant Physiol. 128, 95107.
  • Kreft, O., Hoefgen, R. and Hesse, H. (2003) Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants. Plant Physiol. 131, 18431854.
  • Lee, M., Martin, M., Hudson, A.O., Lee, J., Muhitch, M.J. and Leustek, T. (2005) Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana. Plant J. 41, 685696.
  • Onouchi, H., Lambein, I., Sakurai, R., Suzuki, A., Chiba, Y. and Naito, S. (2004) Autoregulation of the gene for cystathionine gamma-synthase in Arabidopsis: post-transcriptional regulation induced by S-adenosylmethionine. Biochem. Soc. Trans. 32, 597600.
  • Onouchi, H., Nagami, Y., Haraguchi, Y., Nakamoto, M., Nishimura, Y., Sakurai, R., Nagao, N., Kawasaki, D., Kadokura, Y. and Naito, S. (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19, 17991810.
  • Paris, S., Viemon, C., Curien, G. and Dumas, R. (2003) Mechanism of control of Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase by threonine. J. Biol. Chem. 278, 53615366.
  • Ravanel, S., Gakiere, B., Job, D. and Douce, R. (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl Acad. Sci. USA, 95, 78057812.
  • Rebeille, F., Jabrin, S., Bligny, R., Loizeau, K., Gambonnet, B., Van Wilder, V., Douce, R. and Ravanel, S. (2006) Methionine catabolism in Arabidopsis cells is initiated by a gamma-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proc. Natl Acad. Sci. USA, 103, 1568715692.
  • Shaul, O. and Galili, G. (1992) Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase from Escherichia coli. Plant Physiol. 100, 11571163.
  • Shaul, O. and Galili, G. (1993) Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol. Biol. 23, 759768.
  • Tang, G., Zhu-Shimoni, J.X., Amir, R., Zchori, I.B. and Galili, G. (1997) Cloning and expression of an Arabidopsis thaliana cDNA encoding a monofunctional aspartate kinase homologous to the lysine-sensitive enzyme of Escherichia coli. Plant Mol. Biol. 34, 287293.
  • Wessel, P.M., Graciet, E., Douce, R. and Dumas, R. (2000) Evidence for two distinct effector-binding sites in threonine deaminase by site-directed mutagenesis, kinetic, and binding experiments. Biochemistry, 39, 1513615143.
  • Zeh, M., Casazza, A.P., Kreft, O., Roessner, U., Bieberich, K., Willmitzer, L., Hoefgen, R. and Hesse, H. (2001) Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol. 127, 792802.