SEARCH

SEARCH BY CITATION

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 33893402.
  • Andersson, M.X., Stridh, M.H., Larsson, K.E., Liljenberg, C. and Sandelius, A.S. (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett. 537, 128132.
  • Andersson, M.X., Larsson, K.E., Tjellstrom, H., Liljenberg, C. and Sandelius, A.S. (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid- to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J. Biol. Chem. 280, 2757827586.
  • Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L. and Chiou, T.J. (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141, 10001011.
  • Awai, K., Marechal, E., Block, M.A., Brun, D., Masuda, T., Shimada, H., Takamiya, K., Ohta, H. and Joyard, J. (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 98, 1096010965.
  • Awai, K., Xu, C., Tamot, B. and Benning, C. (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc. Natl Acad. Sci. USA, 103, 1081710822.
  • Bari, R., Datt, P.B., Stitt, M. and Scheible, W.R. (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141, 988999.
  • Bell, C.J. and Ecker, J.R. (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics, 19, 137144.
  • Benning, C. and Ohta, H. (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280, 23972400.
  • Bessoule, J.J., Testet, E. and Cassagne, C. (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic reticulum membranes. Eur. J. Biochem. 228, 490497.
  • Bleecker, A.B., Estelle, M.A., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 241, 10861089.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Camougrand, N., Pelissier, P., Velours, G. and Guerin, M. (1995) NCA2, a second nuclear gene required for the control of mitochondrial synthesis of subunits 6 and 8 of ATP synthase in Saccharomyces cerevisiae. J. Mol. Biol. 247, 588596.
  • Cao, A., Jain, A., Baldwin, J.C. and Raghothama, K.G. (2007) Phosphate differentially regulates 14-3-3 family members and GRF9 plays a role in Pi-starvation induced responses. Planta, 226, 12191230.
  • Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539544.
  • Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F. and Su, C.L. (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell, 18, 412421.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Devaiah, B.N., Karthikeyan, A.S. and Raghothama, K.G. (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 143, 17891801.
  • Devaiah, B.N., Nagarajan, V.K. and Raghothama, K.G. (2007b) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol. 145, 147159.
  • Dörmann, P. and Benning, C. (2002) Galactolipids rule in seed plants. Trends Plant Sci. 7, 112118.
  • Dörmann, P., Hoffmann-Benning, S., Balbo, I. and Benning, C. (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell, 7, 18011810.
  • Dörmann, P., Balbo, I. and Benning, C. (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science, 284, 21812184.
  • Douce, R., Christensen, E.L. and Bonner, W.D. (1972) Preparation of intact plant mitochondria. Biochim. Biophys. Acta, 275, 148160.
  • Ermolova, N.V., Ann, C.M., Taybi, T., Condon, S.A., Cushman, J.C. and Chollet, R. (2003) Expression, purification, and initial characterization of a recombinant form of plant PEP-carboxylase kinase from CAM-induced Mesembryanthemum crystallinum with enhanced solubility in Escherichia coli. Protein Expr. Purif. 29, 123131.
  • Essigmann, B., Güler, S., Narang, R.A., Linke, D. and Benning, C. (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 95, 19501955.
  • Estelle, M.A. and Somerville, C. (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol. Gen. Genet. 206, 200206.
  • Finnegan, P.M., Wooding, A.R. and Day, D.A. (1999) An alternative oxidase monoclonal antibody recognises a highly conserved sequence among alternative oxidase subunits. FEBS Lett. 447, 2124.
  • Foyer, C.H., Rowell, J. and Walker, D. (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta, 157, 239244.
  • Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I., Rubio-Somoza, I., Leyva, A., Weigel, D., Garcia, J.A. and Paz-Ares, J. (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 10331037.
  • Fujii, H., Chiou, T.J., Lin, S.I., Aung, K. and Zhu, J.K. (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15, 20382043.
  • Gaude, N., Brehelin, C., Tischendorf, G., Kessler, F. and Dörmann, P. (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J. 49, 729739.
  • Härtel, H., Dörmann, P. and Benning, C. (2000) DGD1-independent biosynthesis of extraplastidic galactolipids following phosphate deprivation in Arabidopsis. Proc. Natl Acad. Sci. USA, 97, 1064910654.
  • Heazlewood, J.L., Tonti-Filippini, J.S., Gout, A.M., Day, D.A., Whelan, J. and Millar, A.H. (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell, 16, 241256.
  • Heazlewood, J.L., Verboom, R.E., Tonti-Filippini, J., Small, I. and Millar, A.H. (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res. 35, D213D218.
  • Jiang, C., Gao, X., Liao, L., Harberd, N.P. and Fu, X. (2007) Phosphate-starvation root architecture and anthocyanin-accumulation responses are modulated by the GA-DELLA signaling pathway in Arabidopsis. Plant Physiol. 145, 14601470.
  • Jouhet, J., Marechal, E., Baldan, B., Bligny, R., Joyard, J. and Block, M.A. (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J. Cell Biol. 167, 863874.
  • Jouhet, J., Marechal, E. and Block, M.A. (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog. Lipid Res. 46, 3755.
  • Keech, O., Dizengremel, P. and Gardestrom, P. (2005) Preparation of leaf mitochondria from Arabidopsis thaliana. Physiol. Plant. 124, 403409.
  • Kelly, A.A. and Dörmann, P. (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J. Biol. Chem. 277, 11661173.
  • Kelly, A.A., Froehlich, J.E. and Dörmann, P. (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell, 15, 26942706.
  • Kobayashi, K., Masuda, T., Takamiya, K. and Ohta, H. (2006) Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J. 47, 238248.
  • Konieczny, A. and Ausubel, F.M. (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403410.
  • Krogh, A., Larsson, B., Von Heijne, G. and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567580.
  • Lai, F., Thacker, J., Li, Y. and Doerner, P. (2007) Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Plant J. 50, 545556.
  • Lu, B., Xu, C., Awai, K., Jones, A.D. and Benning, C. (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J. Biol. Chem. 282, 3594535953.
  • Mamedov, T.G., Moellering, E.R. and Chollet, R. (2005) Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga Chlamydomonas reinhardtii. Plant J. 42, 832843.
  • Martinez-Garcia, J.F., Monte, E. and Quail, P.H. (1999) A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J. 20, 251257.
  • Misson, J., Raghothama, K.G., Jain, A. et al. (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl Acad. Sci. USA, 102, 1193411939.
  • Miura, K., Rus, A., Sharkhuu, A. et al. (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl Acad. Sci. USA, 102, 77607765.
  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473497.
  • Neff, M.M., Neff, J.D., Chory, J. and Pepper, A.E. (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387392.
  • Noctor, G. and Foyer, C.H. (1998) Simultaneous measurement of foliar glutathione, gamma-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal. Biochem. 264, 98110.
  • Pelissier, P.P., Camougrand, N.M., Manon, S.T., Velours, G.M. and Guerin, M.G. (1992) Regulation by nuclear genes of the mitochondrial synthesis of subunits 6 and 8 of the ATP synthase of Saccharomyces cerevisiae. J. Biol. Chem. 267, 24672473.
  • Pelissier, P., Camougrand, N., Velours, G. and Guerin, M. (1995) NCA3, a nuclear gene involved in the mitochondrial expression of subunits 6 and 8 of the Fo-F1 ATP synthase of S. cerevisiae. Curr. Genet. 27, 409416.
  • Rubio, V., Linhares, F., Solano, R., Martin, A.C., Iglesias, J., Leyva, A. and Paz-Ares, J. (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 15, 21222133.
  • Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M., Scholkopf, B., Weigel, D. and Lohmann, J.U. (2005) A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501506.
  • Schmitt, S., Prokisch, H., Schlunck, T. et al. (2006) Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics, 6, 7280.
  • Shin, R. and Schachtman, D.P. (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl Acad. Sci. USA, 101, 88278832.
  • Shin, R., Berg, R.H. and Schachtman, D.P. (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46, 13501357.
  • Theodorou, M.E. and Plaxton, W.C. (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol. 101, 339344.
  • Tranel, J.P., Froehlich, J., Goyal, A. and Keegstra, K. (1995) A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J. 14, 24362446.
  • Umbach, A.L., Fiorani, F. and Siedow, J.N. (2005) Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol. 139, 18061820.
  • Veljovic-Jovanovic, S., Noctor, G. and Foyer, C.H. (2002) Are leaf hydrogen peroxide concentrations commonly over estimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501507.
  • Wasaki, J., Shinano, T., Onishi, K. et al. (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J. Exp. Bot. 57, 20492059.
  • Watrud, L.S., Baldwin, J.K., Miller, R.J. and Koeppe, D.E. (1975) Induction of a sensitive response to Helminthosporium maydis Race T toxin in resistant mitochondria of corn (Zea mays L.) by removal of the outer mitochondrial membrane. Plant Physiol. 56, 216221.
  • Wu, P., Ma, L., Hou, X., Wang, M., Wu, Y., Liu, F. and Deng, X.W. (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 132, 12601271.
  • Xu, C., Fan, J., Riekhof, W., Froehlich, J.E. and Benning, C. (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J. 22, 23702379.
  • Xu, C., Fan, J., Froehlich, J., Awai, K. and Benning, C. (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell, 17, 30943110.
  • Zahedi, R.P., Sickmann, A., Boehm, A.M., Winkler, C., Zufall, N., Schonfisch, B., Guiard, B., Pfanner, N. and Meisinger, C. (2006) Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol. Biol. Cell, 17, 14361450.