SEARCH

SEARCH BY CITATION

References

  • Aarts, M.G.M., Keijzer, C.J., Stiekema, W.J. and Pereira, A. (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 7, 21152127.
  • Andersson, M.X., Goksor, M. and Sandelius, A.S. (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J. Biol. Chem. 282, 11701174.
  • Anwar, M., Khan, H.U., Nautiyal, S.P., Agrawal, K.M. and Rawat, B.S. (1999) Solubilised waxes and their influence on the flow properties of lube oil base stocks. Pet. Sci. Technol. 17, 491501.
  • Ariizumi, T., Hatakeyama, K., Hinata, K., Sato, S., Kato, T., Tabata, S. and Troiyama, K. (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen–1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol. Biol. 53, 107116.
  • Atsmon, D. (1989) Castor. In Oil Crops of the World (Robbelen, G., Downey, K.R. and Ashri, A., eds). New York: McGraw-Hill, pp. 438447.
  • Austin, R.B., Morgan, C.L. and Ford, M.A. (1986) Dry matter yields and photosynthetic rates of diploid and hexaploid Triticum species. Ann. Bot. 57, 847857.
  • Azzam, A.M. (2006) Separation and analysis of wax from Egyptian sugar cane filter press cake. Fette Seifen Anstrichmittel, 86, 247250.
  • Baker, E.A. (1974) The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytol. 73, 955966.
  • Bargel, H., Koch, K., Cerman, Z. and Neinhuis, C. (2006) Structure–function relationships of the plant cuticle and cuticular waxes – a smart material? Funct. Plant Biol. 33, 893910.
  • Basson, I. and Reynhardt, E.C. (1988) An investigation of the structures and molecular dynamics of natural waxes: II. carnauba wax. J. Phys. D, 21, 14291433.
  • Bates, P.D., Ohlrogge, J.B. and Pollard, M. (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J. Biol. Chem. 282, 3120631216.
  • Beaudoin, F., Gable, K., Sayanova, O., Dunn, O. and Napier, J.A. (2002) A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase. J. Biol. Chem. 277, 1148111488.
  • Bianchi, G. (1995) Plant waxes. In Waxes: Chemistry, Molecular Biology and Functions (Hamilton, R.J., ed.). Dundee, UK: The Oily Press, pp. 175222.
  • Bianchi, G. and Corbellini, M. (1977) Epicuticular wax of Triticum aestivum Demar 4. Phytochemistry, 16, 943945.
  • Bianchi, G., Avato, P. and Salamini, F. (1984) Surface waxes from grain leaves and husks of maize (Zea mays L.). Cereal Chem. 61, 4547.
  • Bird, D., Beisson, F., Brigham, A., Shin, J., Greer, S., Jetter, R., Kunst, L., Wu, X., Yephremov, A. and Samuels, L. (2007) Characterization of Arabidopsis WBC11/ABCG11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J. 52, 485498.
  • Bognar, A.L., Paliyath, G., Rogers, L. and Kolattukudy, P.E. (1984) Biosynthesis of alkanes by particulate and solubilized enzyme preparations from pea leaves (Pisum sativum). Arch. Biochem. Biophys. 235, 817.
  • Bonaventure, G., Salas, J.J., Pollard, M. and Ohlrogge, J.B. (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell, 15, 10201033.
  • Botti, C., Prat, L., Palzkill, D. and Canaves, L. (1998) Evaluation of jojoba clones grown under water and salinity stresses in Chile. Ind. Crops Prod. 9, 3945.
  • Burdett, K., Larkins, L.K., Das, A.K. and Hajra, A.K. (1991) Peroxisomal localization of acyl-coenzyme A reductase (long chain alcohol forming) in guinea pig intestine mucosal cells. J. Biol. Chem. 266, 1220112206.
  • Carlsson, A.S.(2006) Production of Wax Esters in Crambe. EpoBIO Report. Newbury, UK: CLC Press, http://www.epobio.net/pdfs/0611CrambeWaxEstersReport_c.pdf .
  • Cheesbrough, T.M. and Kolattukudy, P.E. (1984) Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc. Natl Acad. Sci. USA, 81, 66136617.
  • Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X. and Jenks, M.A. (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 15, 11701185.
  • Cheng, J.B. and Russell, D.W. (2004a) Mammalian wax biosynthesis. I. Identification of two fatty acyl-coenzyme A reductases with different substrate specificities and tissue distributions. J. Biol. Chem. 279, 3778937897.
  • Cheng, J.B. and Russell, D.W. (2004b) Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J. Biol. Chem. 279, 3779837807.
  • Chibnall, A.C. and Piper, S.H. (1934) The metabolism of plant and insect waxes. Biochem. J. 28, 22092219.
  • Clough, R., Matthis, A.L., Barnum, S.R. and Jaworski, J.G. (1992) Purification and characterization of 3–ketoacyl-acyl carrier protein synthase from spinach: a condensing enzyme utilizing acetyl-CoA to initiate fatty acid synthesis. J. Biol. Chem. 267, 2099220998.
  • Cooper, L.L.D., Oliver, J.E., De Vilbiss, E.D. and Doss, R.P. (2000) Lipid composition of the extracellular matrix of Botruytis cinerea. Phytochemistry, 53, 293298.
  • Da Silva, J.A., Da Cunha, P.B. and Meunier, I.M.J. (1999) Modelagem da producao cerifera de carnauba Copernicia prunifera (Miller) H.E. Moore, no municipio de campo maior – Piaui. CERNE, 5, 6168, in Portuguese.
  • Dekker, M.H.A., Piersma, T. and Sinninghe Damste, J.S. (2000) Molecular analysis of intact preen waxes of Calidris canutus (Aves: Scolopacidae) by gas chromatography/mass spectrometry. Lipids, 35, 533541.
  • Denic, V. and Weissman, J.S. (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell, 130, 663677.
  • Dietrich, C.R., Perera, M.A.D.N., Yandeau-Nelson, M., Meeley, R.B., Nikolau, B.J. and Schnable, P.S. (2005) Characterization of two GL8 paralogs reveals that the 3–ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J. 42, 844861.
  • Doran-Peterson, J., Cook, D.M. and Brandon, S.K.(2008) Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J. 54, 582592.
  • Dunn, T.M., Lynch, D.V., Michaelson, L.V. and Napier, J.A.(2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann. Bot. 93, 483497.
  • Dyer, J., Stymne, S., Green, A. and Carlsson, A.(2008) High value oils from plants. Plant J. 54, 640654.
  • FAOSTAT (2008) ProdSTAT: Crops. Rome: Food and Agriculture Organization of the United Nations.
  • Fiebig, A., Mayfield, J.A., Miley, N.L., Chau, S., Fischer, R.L. and Preuss, D. (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell, 12, 20012008.
  • Gable, K., Garton, S., Napier, J.A. and Dunn, T.M. (2004) Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J. Exp. Bot. 55, 543545.
  • Giese, B.N. (1975) Effects of light and temperature on the composition of epicuticular wax of barley leaves. Phytochemistry, 14, 921929.
  • Gower, S.T., Kucharik, C.J. and Norman, J.M. (1999) Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70, 2951.
  • Greer, S., Wen, M., Bird, D., Wu, X., Samuels, L., Kunst, L. and Jetter, R.(2007) The cytochrome P450 enzyme CYP96A15 is the mid-chain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis thaliana. Plant Physiol. 145, 653667.
  • Hannoufa, A., McNevin, J. and Lemieux, B. (1993) Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry, 33, 851855.
  • Haribal, M., Dhondt, A.A., Rosane, D. and Rodriguez, E. (2005) Chemistry of preen gland secretions of passerines: different pathways to same goal? Why? Chemoecology, 15, 251260.
  • Hogge, L.R., Taylor, D.C., Reed, D.W. and Underhill, E.W. (1991) Characterization of castor bean neutral lipids by mass spectrometry/mass spectrometry. J. Am. Oil Chem. Soc. 68, 863868.
  • Holloway, P.J.(1984) Surface lipids of plants and animals. In Handbook of Chromatography, Lipids. Vol. 1 (Mangold, H.K., Zweig, G. and Sherma, J. eds). Boca Raton, FL: CRC Press, pp. 347380.
  • Hooker, T.S., Millar, A.A. and Kunst, L. (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol. 129, 15681580.
  • Howard, R.W. and Blomquist, G.J. (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371393.
  • Illmann, G., Schmidt, H., Brotz, W., Michalczyk, G., Payer, W., Frohning, C.D., Dietsche, W., Hohner, G. and Wildgruber, J. (1983) Wachse. In Ullmanns Lexikon der Technischen Chemie, Vol. 24 . (Bartholome, E., Biekert, E. and Hellmann, H. eds). Weinheim, Germany: Wiley VCH, pp. 149.
  • Imai, T., Nakamura, K. and Shibata, M. (2001) Relationships between the hardness of an oil–wax gel and the surface structure of the wax crystals. Colloids Surf. A, 194, 233237.
  • Ishige, T., Tani, A., Takabe, K., Kawasaki, K., Sakai, Y. and Kato, N. (2002) Wax ester production from n–alkanes by Acinetobacter sp. strain M–1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl. Environ. Microbiol. 68, 11921195.
  • Ishige, T., Tani, A., Sakai, Y. and Kato, N. (2003) Wax ester production by bacteria. Curr. Opin. Microbiol. 6, 244250.
  • Jakobsson, A., Westerberg, R. and Jacobsson, A. (2006) Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45, 237249.
  • Jaworski, J. and Cahoon, E.B. (2003) Industrial oils from transgenic plants. Curr.Opin. Plant Biol. 6, 178184.
  • Jenks, M.A., Tuttle, H.A., Eigenbrode, S.D. and Feldmann, K.A. (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol. 108, 369377.
  • Jetter, R., Kunst, L. and Samuels, A.L.(2006) Composition of plant cuticular waxes. In Biology of the Plant Cuticle (Riederer, M. and Müller, C.eds). Oxford: Blackwell, pp. 145181.
  • Johnson, D.V. and Nair, P.K.R. (1985) Perennial crop-based agroforestry systems in Northeast Brazil. Agrofor. Syst. 2, 281292.
  • Kim, E.-S. and Mahlberg, P.U. (1995) Glandular cuticle formation in Cannabis (Cannabaceae). Am. J. Bot. 82, 12071214.
  • Kobayashi, M., Saitoh, M., Ishida, K. and Yachi, H. (2005) Viscosity properties and molecular structure of lube base oil prepared from Fischer–Tropsch waxes. J. Jpn Pet. Inst. 48, 365372.
  • Kohlwein, S.D., Eder, S., Oh, C.-S., Martin, C.E., Gable, K., Bacikova, D. and Dunn, T. (2001) Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear–vacuolar interface in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 109125.
  • Kolattukudy, P.E. (1965) Biosynthesis of wax in Brassica oleracea. Biochemistry, 4, 18441855.
  • Kolattukudy, P.E. (1968) Tests whether a head to head condensation mechanism occurs in the biosynthesis of n–hentriacontane, the paraffin of spinach and pea leaves. Plant Physiol. 43, 14661470.
  • Kolattukudy, P.E. (1970) Reduction of fatty acids to alcohols by cell-free preparations of Euglena gracilis. Biochemistry, 9, 10951102.
  • Kolattukudy, P.E. (1971) Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch. Biochem. Biophys. 142, 701709.
  • Kolattukudy, P.E. (1976) Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier.
  • Kolattukudy, P.E. and Brown, L. (1974) Inhibition of cuticular lipid biosynthesis in Pisum sativum by thiocarbamates. Plant Physiol. 53, 903906.
  • Kolattukudy, P.E. and Liu, T.-Y.J. (1970) Direct evidence for biosynthetic relationships among hydrocarbons, secondary alcohols and ketones in Brassica oleracea. Biochem. Biophys. Res. Commun. 41, 13691374.
  • Kolattukudy, P.E., Jaeger, R.H. and Robinson, R. (1971) Biogenesis of nonacosan-15–one in Brassica oleracea. Phytochemistry, 10, 30473051.
  • Kolattukudy, P.E., Buckner, J.S. and Liu, T.-Y.J. (1973) Biosynthesis of secondary alcohols and ketones from alkanes. Arch. Biochem. Biophys. 156, 613620.
  • Kolattukudy, P.E., Croteau, R. and Brown, L. (1974) Structure and biosynthesis of cuticular lipids. Hydroxylation of palmitic acid and decarboxylation of C28, C30 and C32 acids in Vicia faba flowers. Plant Physiol. 54, 670677.
  • Koo, A.J.K., Ohlrogge, J.B. and Pollard, M.(2004) On the export of fatty acids from the chloroplast. J. Biol. Chem. 279, 1610116110.
  • Koornneef, M., Hanhart, C.J. and Thiel, F. (1989) A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. J. Hered. 80, 118122.
  • Kunst, L. and Samuels, A.L. (2003) Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 5180.
  • Kunst, L., Jetter, R. and Samuels, A.L.(2006) Biosynthesis and transport of plant cuticular waxes. In Biology of the Plant Cuticle (Riederer, M. and Müller, C.eds). Oxford: Blackwell, pp. 182215.
  • Kurata, T., Kawabata-Awai, C., Sakuradani, E., Shimizu, S., Okada, K. and Wada, T. (2003) The YORE–YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J. 36, 5566.
  • Lai, C., Kunst, L. and Jetter, R. (2007) Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana cer mutants. Plant J. 50, 189196.
  • Lamberton, J.A. and Redcliffe, A.H. (1960) The chemistry of sugar-cane wax. I. The nature of sugar-cane wax. Aust. J. Chem. 13, 261268.
  • Lardizabal, K.D., Metz, J.G., Sakamoto, T., Hutton, W.C., Pollard, M.R. and Lassner, M.W. (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol. 122, 645655.
  • Lassner, M.W., Lardizabal, K. and Metz, J.G. (1996) A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell, 8, 281292.
  • McMillan, L.C. and Darvell, B.W. (2000) Rheology of dental waxes. Dent. Mater. 16, 337350.
  • Metz, J.G., Pollard, M.R., Anderson, L., Hayes, T.R. and Lassner, M.W. (2000) Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol. 122, 635644.
  • Millar, A.A. and Kunst, L. (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. 12, 121131.
  • Millar, A.A., Clemens, S., Zachgo, S., Giblin, E.M., Taylor, D.C. and Kunst, L. (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell, 11, 825838.
  • Negruk, V., Yang, P., Subramanian, M., McNevin, J.P. and Lemieux, B. (1996) Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J. 9, 137145.
  • Ogunniy, D.S. (2006) Castor oil: a vital industrial raw material. Bioresour. Technol. 97, 10861091.
  • Ohlrogge, J. and Browse, J. (1995) Lipid biosynthesis. Plant Cell, 7, 957970.
  • Ohlrogge, J.B., Jaworski, J.G. and Post-Beittenmiller, D. (1993) De novo fatty acid biosynthesis. In Lipid Metabolism in Plants (Moore, T.S., ed.). Boca Raton, FL: CRC Press, pp. 332.
  • Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R.B., Höfer, R., Schreiber, L., Chory, J. and Aharoni, A. (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol. 145, 13451360.
  • Paturau, J.M. (1982) By-Products of the Cane Sugar Industry. Amsterdam: Elsevier.
  • Pauly, M. and Keegstra, K.(2008) Cell wall carbohydrates and their modifications as a resource for biofuels. Plant J. 54, 559568.
  • Pennisi, E. (2007) The greening of plant genomics. Science, 317, 317.
  • Perera, M.A.D.N., Dietrich, C.R., Meeley, R., Schnable, P.S. and Nikolau, B.J. (2003) Dissecting the maize epicuticular wax biosynthetic pathway via the characterization of an extensive collection of glossy mutants. In Advanced Research on Lipids (Murata, N., Yamada, M., Nishida, I., Okuyama, H., Sekiya, J. and Hajime, W., eds). Dordrecht, The Netherlands: Kluwer Academic, pp. 225228.
  • Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L. and Samuels, A.L. (2004) Plant cuticular lipid export requires an ABC transporter. Science, 306, 702704.
  • Pollard, M.R., McKeon, T., Gupta, L.M. and Stumpf, P.K. (1979) Studies on biosynthesis of waxes by developing Jojoba seed. 2. The demonstration of wax biosynthesis by cell-free homogenates. Lipids, 14, 651662.
  • Purcell, H.C., Abbott, T.P., Holser, R.A. and Phillips, B.S. (2000) Simmondsin and wax ester levels in 100 high-yielding jojoba clones. Ind. Crops Prod. 12, 151157.
  • Rashotte, A.M., Jenks, M.A. and Feldmann, K.A. (2001) Cuticular waxes on eceriferum mutants of Arabidopsis thaliana. Phytochemistry, 57, 115123.
  • Rashotte, A.M., Jenks, M.A., Ross, A.S. and Feldmann, K.A. (2004) Novel eceriferum mutants in Arabidopsis thaliana. Planta, 219, 513.
  • Regert, M., Langlois, J. and Colinart, S. (2005) Characterisation of wax works of art by gas chromatographic procedures. J. Chromatogr. A, 1091, 124136.
  • Riederer, M. and Müller, C. (2006) Biology of the Plant Cuticle. Oxford: Blackwell.
  • Rowland, O., Zheng, H., Hepworth, S.R., Lam, P., Jetter, R. and Kunst, L. (2006) CER4 encodes an alcohol-forming fatty acyl-CoA reductase involved in cuticular wax production in Arabidopsis. Plant Physiol. 142, 866877.
  • Rowland, O., Lee, R., Franke, R., Schreiber, L. and Kunst, L. (2007) The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett. 581, 35383544.
  • Schnurr, J.A., Shockey, J.M., De Boer, G.-J. and Browse, J.A. (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol. 129, 17001709.
  • Schulz, H. (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl. Catal. A, 186, 312.
  • Shimakata, T. and Stumpf, P.K. (1982) Purification and characterizations of β-ketoacyl-[acyl-carrier-protein] reductase, β-hydroxyacyl-[acyl-carrier-protein] dehydrase, and enoyl-[acyl-carrier-protein] reductase from Spinacia oleracea leaves. Arch. Biochem. Biophys. 218, 7791.
  • Shockey, J.M., Fulda, M.S. and Browse, J.A. (2002) Arabidopsis contains nine long-chain acyl-coenzyme A synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol. 129, 17101722.
  • Stöveken, T., Kalscheuer, R., Malkus, U., Reichelt, R. and Steinbüchel, A. (2005) The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J. Bacteriol. 187, 13691376.
  • Stumpf, P.K. (1984) Fatty acid biosynthesis in higher plants. In Fatty Acid Metabolism and its Regulation (Numa, S., ed.). Amsterdam: Elsevier, pp. 155179.
  • Sweeney, R.J., Lovette, I.J. and Harvey, E.L. (2004) Evolutionary variation in feather waxes of passerine birds. Auk, 121, 435445.
  • Tulloch, A.P. (1971) Beeswax: structure of the esters and their component hydroxy acids and diols. Chem. Phys. Lipids, 6, 235265.
  • Tulloch, A.P. (1976) Chemistry of waxes of higher plants. In Chemistry and Biochemistry of Natural Waxes (Kolattukudy, P.E., ed.). Amsterdam: Elsevier, pp. 235287.
  • Vandenburg, L.E. and Wilder, E.A. (1967) Aromatic acids of carnauba wax. J. Am. Oil Chem. Soc. 44, 659662.
  • Vioque, J. and Kolattukudy, P.E. (1997) Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.). Arch. Biochem. Biophys. 340, 6472.
  • Voelker, T.A.(1996) Plant acyl-ACP thioesterases: chain-length determining enzymes in plant fatty acid biosynthesis. In Genetic Engineering, Vol. 18 (Setlow, J.K.ed.). New York: Plenum Press, pp. 111131.
  • Wältermann, M., Stöveken, T. and Steinbüchel, A. (2007) Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochemie, 89, 230242.
  • Warth, A.H.(1956) The Chemistry and Technology of Waxes. New York: Reinhold Publishers.
  • Von Wettstein-Knowles, P.(1982) Biosynthesis of epicuticular lipids as analysed with the aid of gene mutations in barley. In Biochemistry and Metabolism of Plant Lipids (Wintermans, J.F.G.M. and Kuiper, P.J.C.eds). Amsterdam: Elsevier, pp. 6978.
  • Von Wettstein-Knowles, P. (1993) Waxes, cutin, and suberin. In Lipid Metabolism in Plants (Moore, T.S., ed.). Boca Raton, FL: CRC Press, pp. 128166.
  • Von Wettstein-Knowles, P. (2007) Analyses of barley spike mutant waxes identify alkenes, cyclopropanes and internally branched alkanes with dominating isomers at carbon 9. Plant J. 49, 250264.
  • Xia, Y., Nikolau, B.J. and Schnable, P.S. (1996) Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell, 8, 12911304.
  • Xu, X., Dietrich, C.R., Lessire, R., Nikolau, B.J. and Schnable, P.S. (2002) The endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme A elongase involved in the production of cuticular waxes. Plant Physiol. 128, 924934.
  • Yen, C.-L.E., Brown, C.H., IV, Monetti, M. and Farese, R.V., Jr (2005) A human skin multifunctional O–acyltransferase that catalyzes the synthesis of acylglycerols, waxes, and retinyl esters. J. Lipid Res. 46, 23882397.
  • Yermanos, D.M. (1975) Composition of jojoba seed during development. J. Am. Oil Chem. Soc. 52, 115117.
  • Zheng, H., Rowland, O. and Kunst, L. (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 17, 14671481.