SEARCH

SEARCH BY CITATION

References

  • Agerbirk, N., Olsen, C.E. and Sorensen, H. (1998) Initial and final products, nitriles and ascorbigens produced in myrosinase-catalyzed hydrolysis of indole glucosinolates. J. Agric. Food. Chem. 46, 15631571.
  • Andreasson, E., Bolt Jorgensen, L., Hoglund, A.S., Rask, L. and Meijer, J. (2001) Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol. 127, 17501763.
  • Barth, C. and Jander, G. (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 46, 549562.
  • Bartlet, E., Kiddle, G., Williams, I. and Wallsgrove, R. (1999) Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomol. Exp. Appl. 91, 163167.
  • Bednarek, P., Schneider, B., Svatos, A., Oldham, N.J. and Hahlbrock, K. (2005) Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol. 138, 10581070.
  • Bender, J. and Fink, G.R. (1998) A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc. Natl Acad. Sci. USA, 95, 56555660.
  • Bernardi, R., Negri, A., Ronchi, S. and Palmieri, S. (2000) Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp. oleifera) seed and its characterization. FEBS Lett. 467, 296298.
  • Bodnaryk, R.P. (1994) Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry, 35, 301305.
  • Burow, M., Zhang, Z.Y., Ober, J.A., Lambrix, V.M., Wittstock, U., Gershenzon, J. and Kliebenstein, D.J. (2007) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry, 69, 663671.
  • Buskov, S., Hansen, L.B., Olsen, C.E., Sorensen, J.C., Sorensen, H. and Sorensen, S. (2000a) Determination of ascorbigens in autolysates of various Brassica species using supercritical fluid chromatography. J. Agric. Food. Chem. 48, 26932701.
  • Buskov, S., Olsen, C.E., Sorensen, H. and Sorensen, S. (2000b) Supercritical fluid chromatography as basis for identification and quantitative determination of indol-3-ylmethyl oligomers and ascorbigens. J. Biochem. Biophys. Meth. 43, 175195.
  • Celenza, J.L., Quiel, J.A., Smolen, G.A., Merrikh, H., Silvestro, A.R., Normanly, J. and Bender, J. (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol. 137, 253262.
  • Cole, R.A. (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species. Entomol. Exp. Appl. 85, 121133.
  • Doughty, K.J., Kiddle, G.A., Pye, B.J., Wallsgrove, R.M. and Pickett, J.A. (1995) Selective induction of glucosinolate in oilseed rape leaves by methyl jasmonate. Phytochemistry, 38, 347350.
  • Ellis, C., Karafyllidis, I. and Turner, J.G. (2002) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant Microbe Interact. 15, 10251030.
  • Fahey, J.W., Zalcmann, A.T. and Talalay, P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 551.
  • Ferrari, S., Galletti, R., Denoux, C., De Lorenzo, G., Ausubel, F.M. and Dewdney, J. (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144, 367379.
  • Foo, H.L., Gronning, L.M., Goodenough, L., Bones, A.M., Danielsen, B., Whiting, D.A. and Rossiter, J.T. (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Lett. 468, 243246.
  • Francis, F., Lognay, G., Wathelet, J.P. and Haubruge, E. (2002) Characterisation of aphid myrosinase and degradation studies of glucosinolates. Arch. Insect Biochem. Physiol. 50, 173182.
  • Giavalisco, P., Kapitza, K., Kolasa, A., Buhtz, A. and Kehr, J. (2006) Towards the proteome of Brassica napus phloem sap. Proteomics, 6, 896909.
  • Gigolashvili, T., Berger, B., Mock, H.P., Muller, C., Weisshaar, B. and Flugge, U.I. (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 56, 886890.
  • Glawischnig, E., Hansen, B.G., Olsen, C.E. and Halkier, B.A. (2004) Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl Acad. Sci. USA, 101, 82458250.
  • Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R. and Ausubel, F.M. (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics, 146, 381392.
  • Griffiths, D.W., Birch, A.N.E. and MacFarlane-Smith, W.H. (1994) Induced changes in the indole glucosinolate content of oil-seed and forage rape (Brassica napus) plant in response to either turnip root fly (Delia floralis) larval feeding or artificial root damage. J. Sci. Food. Agric. 63, 171178.
  • Halkier, B.A. and Gershenzon, J. (2006) Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303333.
  • Hanley, A.B., Belton, P.S., Fenwick, G.R. and Janes, N.F. (1985) Ring oxygenated glucosinolates of Brassica species. Phytochemistry, 24, 598600.
  • Hopkins, R.J., Griffiths, D.W., Birch, A.N.E. and McKinlay, R.G. (1998) Influence of increasing herbivore pressure on modification of glucosinolate content of swedes (Brassica napus spp. rapifera). J. Chem. Ecol. 24, 20032019.
  • Husebye, H., Chadchawan, S., Winge, P., Thangstad, O.P. and Bones, A.M. (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis. Plant Physiol. 128, 11801188.
  • Jones, A.M., Bridges, M., Bones, A.M., Cole, R. and Rossiter, J.T. (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem. Mol. Biol. 31, 15.
  • Jürges, K. and Thies, W. (1980) Quantitative Analyse des Indol-Glucosinolat-Gehaltes in Samen und Blättern von Brassica napus und B. campestris. Z. Pflanzenzüchtg. 84, 168178.
  • Kim, J.H. and Jander, G. (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J. 49, 10081019.
  • Kliebenstein, D.J., Figuth, A. and Mitchell-Olds, T. (2002) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics, 161, 16851696.
  • Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D.J. and Gershenzon, J. (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell, 13, 27932807.
  • McDanell, R., McLean, A.E., Hanley, A.B., Heaney, R.K. and Fenwick, G.R. (1988) Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem. Toxicol. 26, 5970.
  • Mewis, I., Appel, H.M., Hom, A., Raina, R. and Schultz, J.C. (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol. 138, 11491162.
  • Mewis, I., Tokuhisa, J.G., Schultz, J.C., Appel, H.M., Ulrichs, C. and Gershenzon, J. (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 67, 24502462.
  • Mikkelsen, M.D., Naur, P. and Halkier, B.A. (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J. 37, 770777.
  • Miles, P.W. (1999) Aphid saliva. Biol. Rev. 74, 4185.
  • Müller, C. and Sieling, N. (2006) Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore – and vice versa. Chemoecology, 16, 191201.
  • Pedras, M.S., Nycholat, C.M., Montaut, S., Xu, Y. and Khan, A.Q. (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry, 59, 611625.
  • Pegadaraju, V., Knepper, C., Reese, J. and Shah, J. (2005) Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem-feeding green peach aphid. Plant Physiol. 139, 19271934.
  • Piotrowski, M., Schemenewitz, A., Lopukhina, A., Muller, A., Janowitz, T., Weiler, E.W. and Oecking, C. (2004) Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem. 279, 5071750725.
  • Pontoppidan, B., Ekbom, B., Eriksson, S. and Meijer, J. (2001) Purification and characterization of myrosinase from the cabbage aphid (Brevicoryne brassicae), a Brassica herbivore. Eur. J. Biochem. 268, 10411048.
  • Ramsey, J.S., Wilson, A.C., De Vos, M. et al. (2007) Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics, 8, 423.
  • Rostas, M., Bennett, R. and Hilker, M. (2002) Comparative physiological responses in Chinese cabbage induced by herbivory and fungal infection. J. Chem. Ecol. 28, 24492463.
  • Sasaki-Sekimoto, Y., Taki, N., Obayashi, T. et al. (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 44, 653668.
  • Schuhegger, R., Nafisi, M., Mansourova, M., Petersen, B.L., Olsen, C.E., Svatos, A., Halkier, B.A. and Glawischnig, E. (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol. 141, 12481254.
  • Staub, R.E., Feng, C., Onisko, B., Bailey, G.S., Firestone, G.L. and Bjeldanes, L.F. (2002) Fate of indole-3-carbinol in cultured human breast tumor cells. Chem. Res. Toxicol. 15, 101109.
  • Thangstad, O.P., Gilde, B., Chadchawan, S., Seem, M., Husebye, H., Bradley, D. and Bones, A.M. (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol. Biol. 54, 597611.
  • Tiedink, H.G.M., Malingre, C.E., Van Broekhoven, L.W., Jongen, W.M.F. and Fenwick, G.R. (1991) Role of glucosinolates in the formation of N-nitroso compounds. J. Agric. Food. Chem. 39, 922926.
  • Tjallingii, W.F. and Hogen Esch, T. (1993) Fine structure of aphid stylet routes in plant tissues in correlation with EPG-signals. Physiol. Entomol. 18, 317328.
  • Traw, M.B. (2002) Is induction response negatively correlated with constitutive resistance in black mustard? Evolution, 56, 21962205.
  • Weber, G., Oswald, S. and Zollner, U. (1986) Die Wirtseinigung von Rapssorten unterschiedlichen Glucosinolatgehalts fuer Brevicoryne brassicae (L.) und Myzus persicae (Sulzer) (Hemiptera, Aphididae). Z. Pflanzenkr. Pflanzenschutz, 93, 113124.
  • Wittstock, U., Agerbirk, N., Stauber, E.J., Olsen, C.E., Hippler, M., Mitchell-Olds, T., Gershenzon, J. and Vogel, H. (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl Acad. Sci. USA, 101, 48594864.
  • Zhang, Z., Ober, J.A. and Kliebenstein, D.J. (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell, 18, 15241536.
  • Zhao, Y., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J. and Celenza, J.L. (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev., 16, 31003112.