SEARCH

SEARCH BY CITATION

References

  • Agrawal, A.K. and Bhalla, R. (2003) Advances in the production of poly(lactic acid) fibres. A review. J. Macromol. Sci. 43, 479504.
  • Almeida, J.P.M., Modig, T., Petersson, A., Hahn-Hagerdahl, B., Linden, G. and Gorwa-Grauslund, M.F. (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82, 340349.
  • Antoni, D., Zverlov, V. and Schwarz, W. (2007) Biofuels from microbes. Appl. Microbiol. Biotechnol. 77, 2335.
  • Asghari, A., Bothast, R.J., Doran, J.B. and Ingram, L.O. (1996) Ethanol production of hemicellulose hydrolysates of agricultural residue using genetically engineered Escherichia coli strain KO11. J. Indust. Microbiol. 21–26, 2126.
  • Barbosa, M.F., Beck, M.J., Fein, J.E., Potts, D. and Ingram, L.O. (1992) Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl. Environ. Microbiol. 58, 13821384.
  • Beall, D.S., Ohta, K. and Ingram, L.O. (1991) Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol. Bioeng. 38, 269303.
  • Beall, D.S., Ingram, L.O., Ben-Bassat, A., Doran, J.B., Fowler, D.E., Hall, R.G. and Wood, B.E. (1992) Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 14, 857862.
  • Bianchi, M.M., Brambilla, L., Protani, F., Liu, C.L., Lievense, J.C. and Porro, D. (2001) Efficient homolactic fermentation by Kluveromyces lactis strains defective in pyruvate utilization and transformed with heterologous LDH gene. Appl. Environ. Microbiol. 67, 56215625.
  • Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenback, J., Ehrlich, S.D. and Sorokin, A. (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp IL1403. Genome Res. 11, 731753.
  • Boopathy, R., Bokang, H. and Daniels, L. (1993) Biotransformation of furfural and 5-hydroxymethylfurfural by enteric bacteria. J. Indust. Microbiol. 11, 147150.
  • Bothast, R.J. and Schlicher, M.A. (2005) Biotechnological processes for conversion of corn into ethanol. Appl. Microbiol. Biotechnol. 67, 1925.
  • Brandon, S.K., Eiteman, M.A., Patel, K., Richbourg, M.M., Miller, D.J., Anderson, W.F. and Peterson, J.D. (2007) Hydrolysis of Tifton 85 bermudagrass in a pressurized batch hot water reactor. J. Chem. Technol. Biotechnol. 83, 505–512.
  • Brooks, T.A. (1995) Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol. Prog. 11, 619625.
  • Chang, D.E., Jung, H.C., Rhee, J.S. and Pan, J.G. (1999) Homofermentative production of d- or l-lactate in metabolically engineered Escherichia coli RR1. Appl. Environ. Microbiol. 65, 13841389.
  • Clark, D.P. (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol. Rev. 5, 223234.
  • Cocaign-Bousquet, M., Garrigues, C., Loubiere, P. and Lindley, N.D. (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuwenhoek 70, 253267.
  • Cock, L.S. and De Stouvenel, A.R. (2006) Lactic acid production by a strain of Lactococcus lactis subs lactis isolated from sugar cane plants. Electron. J. Biotechnol. 9, 4045.
  • Datta, R. and Henry, M. (2006) Lactic acid: recent advances in products, processes and technologies – a review. J. Chem. Technol. Biotechnol. 81, 11191129.
  • Delgenes, J.P., Moletta, R. and Navarro, J.M. (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Technol. 19, 220225.
  • Demirci, A. and Pometto, A.L. (1992) Enhanced production of d(−)-lactic acid by mutants of Lactobacillus delbrueckii ATCC9649. J. Indust. Microbiol. 11, 2328.
  • Dien, B.S., Nichols, N.N., O’Bryan, P.J. and Bothast, R.J. (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotechnol. 84, 181196.
  • Dien, B.S., Nichols, N.N. and Bothast, R.J. (2001) Recombinant Escherichia coli engineered for production of l-lactic acid from hexose and pentose sugars. J. Indust. Microbiol. Biotechnol. 27, 259264.
  • Dien, B.S., Cotta, M.A. and Jeffries, T.W. (2003) Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258266.
  • Doran, J.B. and Ingram, L.O. (1993) Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol. Prog. 9, 533538.
  • Doran, J.B., Aldrich, H.C. and Ingram, L.O. (1994) Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol. Bioeng. 44, 240247.
  • Doran, J.B., Cripe, J., Sutton, M. and Foster, B. (2000) Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol. Appl. Biochem. Biotechnol. 84–86, 141152.
  • Drake, H.L. and Daniel, S.L. (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res. Microbiol. 155, 869883.
  • Dupreez, J.C. (1994) Process parameters and environmental-factors affecting d-xylose fermentation by yeasts. Enzyme Microb. Technol. 16, 944956.
  • Eddington, J.M., Johnson, K.B., Liaw, H.J., Rowe, M. and Yang, Y. (2004) Lactobacillus Strains and the Use Thereof in Fermentation Process for Lactic Acid Production. USA Patent 7, 300, 787.
  • Feldmann, S.D., Sahm, H. and Sprenger, G.A. (1992) Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl. Microbiol. Biotechnol. 38, 354361.
  • Grabar, T.B., Zhou, S., Shanmugam, K.T., Yomano, L.P. and Ingram, L.O. (2006) Methylglyoxal bypass identified as a source of chiral contamination in l(+) and d(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol. Lett. 28, 15271535.
  • Grohmann, K., Baldwin, E.A., Buslig, B.S. and Ingram, L.O. (1994) Fermentation of galacturonic acid and other sugars in orange peel hydrolysates by the ethanologenic strain of Escherichia coli. Biotechnol. Lett. 16, 281286.
  • Gutierrez, T., Buszko, M.L., Ingram, L.O. and Preston, J.F. (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl. Biochem. Biotechnol. 98–100, 327340.
  • Hahn-Hägerdal, B., Hallborn, J., Jeppson, H., Olsson, L., Skoog, K. and Walfridsson, M. (1993) Pentose fermentation to alcohol. Biotechnol. Agric. 9, 231290.
  • Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lindén, G. and Zacchi, G. (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549556.
  • Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. and Gorwa-Grauslund, M. (2007) Towards industrial pentose-fermenting yeast strains. Appl. Biochem. Biotechnol. 74, 937953.
  • Hamelinck, C.N., Von Hooijdonk, G. and Faaij, A.P.C. (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy, 28, 384410.
  • Hartley, R. and Ford, C. (1989) Phenolic constituents of plant cell walls and wall degradability. In Plant Cell Wall Polymers: Biogenesis and Biodegradation. American Chemical Society Symposium Series (Lewis, N. and Paice, M., eds). Washington, DC: American Chemical Society, pp. 137144.
  • Hespell, R.B., Wyckoff, H., Dien, B.S. and Bothast, R.J. (1996) Stabilization of pet operon plasmids and ethanol production in Escherichia coli strains lacking lactate dehydrogenase and pyruvate formate-lyase activities. Appl. Environ. Microbiol. 62, 45944597.
  • Ho, N.W.Y., Chen, Z., Brainard, A.P. and Sedlak, M. (2000) Genetically engineered Saccharomyces yeasts for conversion of cellulosic biomass to environmentally friendly transportation fuel ethanol. In Green Chemical Syntheses and Processes (Anastas, P.T., Heine, L.G. and Williamson, T.C., eds). Washington, DC: American Chemical Society, pp. 143159.
  • Hofvendahl, K. and Hans-Hagerdal, B. (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26, 87107.
  • Huang, Y.L., Mann, K., Novak, J.M. and Yang, S.T. (1998) Acetic acid production from fructose by Clostridium formicoaceticum immobilized in a fibrous-bed bioreactor. Biotechnol. Prog. 14, 800806.
  • Ilmen, M., Koivuranta, K., Ruohonen, L., Suominen, P. and Penttila, M. (2007) Efficient production of l-lactic acid from xylose by Pichia stipitis. Appl. Environ. Microbiol. 73, 117123.
  • Ingram, L.O., Lai, X. and Moniruzzaman, M. (1997) Fuel ethanol production from lignocellulose using genetically engineered bacteria. In Fuels and Chemicals from Biomass (Saha, B. and Woodward, J., eds). Washington, DC: American Chemical Society, pp. 5763.
  • Ingram, L.O., Aldrich, H.C., Borges, A.C. et al. (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15, 855866.
  • Iyer, P.V., Thomas, S. and Lee, Y.Y. (2000) High-yield fermentation of pentoses into lactic acid. Appl. Biochem. Biotechnol. 84–86, 665677.
  • Jeffries, T.W. (2006) Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17, 320326.
  • Jeffries, T.W. and Jin, Y.S. (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63, 495509.
  • Jeoh, T. and Agblevor, F.A. (2001) Characterization and fermentation of steam exploded cotton gin waste. Biomass Bioenergy, 21, 109120.
  • Joachimsthal, E.L. and Rogers, P.L. (2000) Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl. Biochem. Biotechnol. 77, 147157.
  • Jones, D.T. and Woods, D.R. (1986) Acetone–butanol fermentation revisited. Microbiol. Rev. 50, 484525.
  • Kenealy, W.R., Houtman, C.J., Laplaza, J., Jeffries, T.W. and Horn, E.G. (2007) Pretreatments for converting wood into paper and chemicals. In Materials, Chemicals, and Energy From Forest Biomass (Argyropoulos, D.S., ed.). Washington, DC: American Chemical Society, pp. 392408.
  • Kim, Y., Ingram, L.O. and Shanmugam, K.T. (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl. Environ. Microbiol. 73, 17661771.
  • Kotter, P. and Ciriacy, M. (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38, 776783.
  • Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S.M., De Laat, W.T.A.M., Den Ridder, J.J.J., Op den Camp, H.J.M., Van Dijken, J.P. and Pronk, J.T. (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae. FEMS Yeast Res. 4, 6978.
  • Kuyper, M., Winkler, A.A., Van Dijken, J.P. and Pronk, J.T. (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res. 4, 655664.
  • Kuyper, M., Toirkens, M.J., Diderich, J.A., Winkler, A.A., Van Dijken, J.P. and Pronk, J.T. (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5, 925934.
  • Kyla-Nikkila, K., Hujanen, M., Leisola, M. and Palva, A. (2000) Metabolic engineering of Lactobacillus helveticus CNR32 for production of pure l(+)-lactic acid. Appl. Environ. Microbiol. 66, 38353841.
  • Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N.-O. and Jonsson, L.J. (2000) Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 84–86, 617632.
  • Lau, M.W., Dale, B.E. and Balan, V. (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol. Bioeng. 99, 529539.
  • Lawford, H.G. and Rousseau, J.D. (1999) The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations. Appl. Biochem. Biotechnol. 77–79, 235249.
  • Lee, S.Y., Hong, S.H., Lee, S.H. and Park, S.J. (2004) Fermentative production of chemicals that can be used for polymer synthesis. Macromol. Biosci. 4, 157164.
  • Leite, A.R., Guimaraes, W.V., De Araujo, E.F. and Silva, D.O. (2000) Fermentation of sweet whey by recombinant Escherichia coli KO11. Braz. J. Microbiol. 31, 212–215.
  • Lequart, C., Ruel, K., Lapierre, C., Pollet, B. and Kurek, B. (2000) Abiotic and enzymatic degradation of wheat straw cell wall: a biochemical and ultrastructural investigation. J. Biotechnol. 80, 249259.
  • Li, X., Weng, J.-K. and Chapple, C. (2008) Tailoring lignin for the improvement of forage, pulp, and biofuel: from genetics to genetic engineering. Plant J. 54, 569581.
  • Lin, Y. and Tanaka, S. (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69, 627642.
  • Liu, C.L. and Lievense, J.C. (2005) Lactic Acid-Producing Yeast. USA Patent 20050112737.
  • Liu, S., Skinner-Nemec, K.A. and Leathers, T.D. (2008) Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J. Indust. Microbiol. Biotechnol. 35, 75–81.
  • Lynd, L.R., Van Zyl, W.H., McBride, J.E. and Laser, M. (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577583.
  • Makarova, K., Slesarev, A., Wolf, Y. et al. (2006) Comparative genomics of the lactic acid bacteria. Proc. Natl Acad. Sci. USA, 102, 1561115616.
  • Van Maris, A.J., Winkler, A.A., Porro, D., Van Dijken, J.P. and Pronk, J.T. (2004) Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl. Environ. Microbiol. 70, 28982905.
  • Van Maris, A., Winkler, A., Kuyper, M., De Laat, W., Van Dijken, J. and Pronk., J.T. (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerases as a key component. Adv. Biochem. Eng. Biotechnol. 108, 179204.
  • McKinlay, J.B., Vieille, C. and Zeikus, G. (2007) Prospects for bio-based succinate industry. Appl. Microbiol. Biotechnol. 76, 727740.
  • McMillan, J.D. (1994a) Conversion of hemicellulose hydrolysates to ethanol. In Enzymatic Conversion of Biomass for Fuels Production (Himmel, M.E., Bake, J.O. and Overend, R.P., eds). Washington, DC: American Chemical Society, pp. 411437.
  • McMillan, J.D. (1994b) Pretreatment of lignocellulosic biomass. In Enzymatic Conversion of Biomass for Fuels Production (Himmel, M.E., Bake, J.O. and Overend, R.P., eds). Washington, DC: American Chemical Society, pp. 292324.
  • Mohagheghi, A., Evans, K., Chou, Y.-C. and Zhang, M. (2002) Co-fermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl. Biochem. Biotechnol. 98–100, 885898.
  • Moniruzzaman, M. and Ingram, L.O. (1998) Ethanol production from dilute acid hydrolysate of rice hulls using genetically engineered Escherichia coli. Biotechnol. Lett. 20, 943947.
  • Moniruzzaman, M., Dien, B.S., Ferrer, B., Hespell, R.B., Dale, B., Ingram, L.O. and Bothast, R.J. (1996) Ethanol production from AFEX pretreated corn fiber by recombinant bacteria. Biotechnol. Lett. 18, 985990.
  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673686.
  • Mussatto, S.I. and Roberto, I.C. (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour. Technol. 93, 110.
  • Narayanan, N., Roychoudhury, P.K. and Srivastava, A. (2004) l-(+)-lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7, 167179.
  • Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T. and Ingram, L.O. (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57, 893900.
  • Okuda, N., Ninomiya, K., Takao, M., Katakura, Y. and Shioya, S. (2007) Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. J. Biosci. Bioeng. 4, 350357.
  • Ostergaard, S., Olsson, L. and Nielsen, J. (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64, 3450.
  • Pauly, M. and Keegstra, K. (2008) Cell-wall carbohydrates and their modifications as a resource for biofuels. Plant J. 54, 559568.
  • Pieterse, B., Leer, R.J., Schuren, F.H.J. and Van Der Werf, M.J. (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology, 151, 38813894.
  • Porro, D., Michele, M.B., Luca, B. et al. (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl. Environ. Microbiol. 65, 42114215.
  • Ragauskas, A.J., Williams, C.K., Davison, B.H. et al. (2006) The path forward for biofuels and biomaterials. Science, 311, 484489.
  • Rajgarhia, V., Dundon, C.A., Olson, S., Suominen, P. and Hause, B. (2004) Methods and Materials for the Production of d-Lactic Acid in Yeast. USA Patent 20040029256.
  • Rao, K., Chaudhari, V., Varanasi, S. and Kim, D.-S. (2007) Enhanced ethanol fermentation of brewery wastewater using the genetically modified strain E. coli KO11. Appl. Microbiol. Biotechnol. 74, 5060.
  • Ray, S.S. and Bousmina, M. (2005) Biodegradable polymers and their layered silicate nanocomposites: greening the 21st century materials world. Prog. Mater. Sci. 50, 9621079.
  • Richard, P., Verho, R., Putkonen, M., Londesborough, J. and Penttila, M. (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res. 3, 185189.
  • Rose, J.K.C., O’Neil, M.A., Albersheim, P. and Darvill, A. (2000) The primary cell wall of higher plants. In Carbohydrates in Chemistry and Biology (Ernst, B., Hart, G.W. and Sinay, P., eds). Weinheim, Germany: Wiley-VCH, pp. 783808.
  • Saitoh, S., Ishida, N., Onishi, T., Tokuhiro, N., Nagamori, E., Kitamota, K. and Takahashi, H. (2005) Genetically engineered wine yeast produces a high concentration of l-lactic acid of extremely high optical purity. Appl. Environ. Microbiol. 71, 27892792.
  • Sedlak, M. and Ho, N.W.Y. (2001) Expression of E.coli araBAD operon encoding enzymes for metabolizing l-arabinose in Saccharomyces cerevisiae. Enzyme Microb. Technol. 28, 1624.
  • Sedlak, M. and Ho, N.W.Y. (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast, 21, 671684.
  • Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M. and Nelson, R. (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J. Indust. Ecol. 7, 117146.
  • Singh, S.K., Ahmed, S.U. and Pandey, A. (2006) Metabolic engineering approaches for lactic acid production. Process Biochem. 41, 9911000.
  • Skory, C. (2000) Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae. Appl. Environ. Microbiol. 66, 23432348.
  • Smith, A. (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J. 54, 546558.
  • Sommerville, D., Bradley, R. and Mailly, D. (2004) Leaf litter quality and decomposition rates of yellow birch and sugar maple seedlings grown in mono-culture and mixed-culture pots at three soil fertility levels. Trees, 18, 608613.
  • Sun, Y. and Cheng, J. (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96, 15991606.
  • Sutton, M. and Doran Peterson, J. (2001) Fermentation of sugarbeet pulp for ethanol production using bioengineered Klebsiella oxytoca strain P2. J. Sugar Beet Res. 38, 1934.
  • Tanaka, K., Komiyama, A., Sonotomoto, K., Ishizaki, A., Hall, S.J. and Stanbury, P.F. (2002) Two different pathways for d-xylose metabolism and the effect of xylose concentration on the yield coefficient of l-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl. Microbiol. Biotechnol. 60, 160167.
  • Vincken, J.-P., Schols, H.A., Oomen, R.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J. and Visser, R.G.F. (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol. 132, 17811789.
  • Wahlbom, C.F., Van Zyl, W.H., Jönsson, L.J., Hahn-Hägerdal, B. and Otero, R.R. (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res. 3, 319326.
  • Walfridsson, M., Bao, M., Anderlund, X., Lilius, G., Bülow, L. and Hahn-Hägerdal, B. (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62, 46484651.
  • Wyman, C. (ed.) (1996) Handbook on Bioethanol: Production and Utilization. Applied Energy Technology Series. Washington, DC: Taylor & Francis.
  • Wyman, C.E. (2003) Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol. Prog. 19, 254262.
  • Yomano, L.P., York, S.W. and Ingram, L.O. (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Indust. Microbiol. Biotechnol. 20, 132138.
  • Zaldivar, J. and Ingram, L.O. (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66, 203210.
  • Zaldivar, J., Martinez, A. and Ingram, L.O. (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 2433.
  • Zaldivar, J., Nielsen, J. and Olsson, L. (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56, 1734.
  • Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. and Picataggio, S. (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science, 267, 240243.
  • Zhou, S., Causey, T.B., Hasona, A., Shanmugam, K.T. and Ingram, L.O. (2003a) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl. Environ. Microbiol. 69, 399407.
  • Zhou, S., Shanmugam, K.T. and Ingram, L.O. (2003b) Functional replacement of the Escherichia colid-(−)-lactate dehydrogenase gene (ldhA) with the l-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl. Environ. Microbiol. 69, 22372244.
  • Zhou, S.G., Causey, T.B., Yomano, L.P., Shanmugam, K.T. and Ingram, L.O. (2005) Fermentation of 10% (w/v) sugar to d(−)-lactate by engineered Escherichia coli B. Biotechnol. Lett. 27, 18911896.
  • Zhou, S., Iverson, A.G. and Grayburn, W.S. (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol. Lett. 30, 335342.