SEARCH

SEARCH BY CITATION

References

  • Austin, M.B. and Noel, J.P. (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79110.
  • Austin, M.B., Izumikawa, M., Bowman, M.E., Udwary, D.W., Ferrer, J.L., Moore, B.S. and Noel, J.P. (2004) Crystal structure of a bacterial type III polyketide synthase and enzymatic control of reactive polyketide intermediates. J. Biol. Chem. 279, 4516245174.
  • Cane, D.E., Walsh, C.T. and Khosla, C. (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science, 282, 6368.
  • Chan, Y.A., Boyne, M.T. II, Podevels, A.M., Klimowicz, A.K., Handelsman, J., Kelleher, N.L. and Thomas, M.G. (2006) Hydroxymalonyl-acyl carrier protein (ACP) and aminomalonyl-ACP are two additional type I polyketide synthase extender units. Proc. Natl Acad. Sci. USA, 103, 1434914354.
  • Chen, L. and Kiely, D.E. (1996) Synthesis of stereoregular head–tail hydroxylated nylons derived from d-glucose. J. Org. Chem. 61, 58475851.
  • Chenier, P.J. (2002) Survey of Industrial Chemistry. New York: Kluwer Academic/Plenum Publishers.
  • Choi, K.H., Heath, R.J. and Rock, C.O. (2000) β-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J. Bacteriol. 182, 365370.
  • Corma, A., Iborra, S. and Velty, A. (2007) Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 24112502.
  • Engin, A., Haluk, H. and Gurkan, K. (2003) Production of lactic acid esters catalyzed by heteropoly acid supported over ion-exchange resins. Green Chem. 5, 460466.
  • Fridman, E., Wang, J., Iijima, Y., Froehlich, J.E., Gang, D.R., Ohlrogge, J. and Pichersky, E. (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell, 17, 12521267.
  • Han, L., Lobo, S. and Reynolds, K.A. (1998) Characterization of β-ketoacyl-acyl carrier protein synthase III from Streptomyces glaucescens and its role in initiation of fatty acid biosynthesis. J. Bacteriol. 180, 44814486.
  • Heaton, C.A. (1991) An Introduction to Industrial Chemistry. Glasgow, UK: Blackie Academic & Professional.
  • Jez, J.M., Bowman, M.E. and Noel, J.P. (2001a) Structure-guided programming of polyketide chain-length determination in chalcone synthase. Biochemistry, 40, 1482914838.
  • Jez, J.M., Ferrer, J.L., Bowman, M.E., Austin, M.B., Schroder, J., Dixon, R.A. and Noel, J.P. (2001b) Structure and mechanism of chalcone synthase-like polyketide synthases. J. Ind. Microbiol. Biotechnol. 27, 393398.
  • Jez, J.M., Bowman, M.E. and Noel, J.P. (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc. Natl Acad. Sci. USA, 99, 53195324.
  • Kroumova, A.B., Xie, Z. and Wagner, G.J. (1994) A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants. Proc. Natl Acad. Sci. USA, 91, 1143711441.
  • Marshall, J. (2007) Biorefineries: curing our addiction to oil. New Scientist, 2611, 2831.
  • Matar, S. and Hatch, L.F. (1994) Chemistry of Petrochemical Processes. Houston, TX: Gulf Publishing Company.
  • Mayer, K.M. and Shanklin, J. (2005) A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues. J. Biol. Chem. 280, 36213627.
  • Mayer, K.M. and Shanklin, J. (2007) Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC Plant Biol. 7, 1.
  • McCoy, M., Reisch, M.S., Tullo, A.H., Short, P.L., Tremblay, J.-F. and Storck, W.J. (2007) Fact and figures of the chemical industry. Chem. Eng. News, 85, 29.
  • McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. and Khosla, C. (1993) Engineered biosynthesis of novel polyketides. Science, 262, 15461550.
  • Moore, J.A. and Kelly, J.E. (1978) Polyesters derived from furan and tetrahydrofuran nuclei. Macromolecules, 11, 568573.
  • Noel, J.P., Austin, M.B. and Bomati, E.K. (2005) Structure–function relationships in plant phenylpropanoid biosynthesis. Curr. Opin. Plant Biol. 8, 249253.
  • Pollard, M.R., Anderson, L., Fan, C., Hawkins, D.J. and Davies, H.M. (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys. 284, 306312.
  • Rawlings, B.J. (2001) Type I polyketide biosynthesis in bacteria (part B). Nat. Prod. Rep. 18, 231281.
  • Reisch, M.S. (2007) Liveris tells it like it is. Chem. Eng. News, 84, 10.
  • Smith, S. and Tsai, S.C. (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 24, 10411072.
  • Staunton, J. and Weissman, K.J. (2001) Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380416.
  • Voelker, T.A. and Davies, H.M. (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J. Bacteriol. 176, 73207327.
  • Voelker, T.A., Worrell, A.C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D.J., Radke, S.E. and Davies, H.M. (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science, 257, 7274.
  • Voelker, T.A., Jones, A., Cranmer, A.M., Davies, H.M. and Knutzon, D.S. (1997) Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol. 114, 669677.
  • Vu, D.T., Lira, C.T., Asthana, N.S., Kolah, A.K. and Miller, D.J. (2006) Vapor–liquid equilibria in the systems ethyl lactate + ethanol and ethyl lactate + water. J. Chem. Eng. Data, 51, 12201225.
  • Werpy, T. and Peterson, G. (eds) (2004) Top Value Added Chemicals from Biomass. Volume 1. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Washington DC: US Department of Energy.