SEARCH

SEARCH BY CITATION

References

  • Baena-Gonzalez, E., Rolland, F., Thevelein, J.M. and Sheen, J. (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature, 448, 938942.
  • Bailey, T.L. and Gribskov, M. (1998) Methods and statistics for combining motif match scores. J. Comput. Biol. 5, 211221.
  • Bailey, T.L., Williams, N., Misleh, C. and Li, W.W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34, W369W373.
  • Belin, C., De Franco, P.O., Bourbousse, C., Chaignepain, S., Schmitter, J.M., Vavasseur, A., Giraudat, J., Barbier-Brygoo, H. and Thomine, S. (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141, 13161327.
  • Benschop, J.J., Mohammed, S., O’Flaherty, M., Heck, A.J., Slijper, M. and Menke, F.L. (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteomics, 6, 11981214.
  • Bhalerao, R.P., Salchert, K., Bako, L., Okresz, L., Szabados, L., Muranaka, T., Machida, Y., Schell, J. and Koncz, C. (1999) Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc. Natl Acad. Sci. USA, 96, 53225327.
  • Boudsocq, M., Barbier-Brygoo, H. and Lauriere, C. (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279, 4175841766.
  • Bullock, A.N., Debreczeni, J., Amos, A.L., Knapp, S. and Turk, B.E. (2005) Structure and substrate specificity of the Pim-1 kinase. J. Biol. Chem. 280, 4167541682.
  • Chevalier, D. and Walker, J.C. (2005) Functional genomics of protein kinases in plants. Brief. Funct. Genomic Proteomic, 3, 362371.
  • Choi, H.I., Park, H.J., Park, J.H., Kim, S., Im, M.Y., Seo, H.H., Kim, Y.W., Hwang, I. and Kim, S.Y. (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol. 139, 17501761.
  • Cohen, P. (2000) The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci. 25, 596601.
  • Dardick, C., Chen, J., Richter, T., Ouyang, S. and Ronald, P. (2007) The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol. 143, 579586.
  • Doppler, H., Storz, P., Li, J., Comb, M.J. and Toker, A. (2005) A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D. J. Biol. Chem. 280, 1501315019.
  • Eichholtz, T., De Bont, D.B., De Widt, J., Liskamp, R.M. and Ploegh, H.L. (1993) A myristoylated pseudosubstrate peptide, a novel protein kinase C inhibitor. J. Biol. Chem. 268, 19821986.
  • Fu, Z., Larson, K.A., Chitta, R.K. et al. (2006) Identification of yin-yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol. Cell. Biol. 26, 86398654.
  • De La Fuente van Bentem, S. and Hirt, H. (2007) Using phosphoproteomics to reveal signalling dynamics in plants. Trends Plant Sci. 12, 404411.
  • De La Fuente van Bentem, S., Anrather, D., Roitinger, E., Djamei, A., Hufnagl, T., Barta, A., Csaszar, E., Dohnal, I., Lecourieux, D. and Hirt, H. (2006) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res. 34, 32673278.
  • Fujii, K., Zhu, G., Liu, Y., Hallam, J., Chen, L., Herrero, J. and Shaw, S. (2004) Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc. Natl Acad. Sci. USA, 101, 1374413749.
  • Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl Acad. Sci. USA, 103, 19881993.
  • Green, H.M. and Alberola-Ila, J. (2005) Development of ERK activity sensor, an in vitro, FRET-based sensor of extracellular regulated kinase activity. BMC Chem. Biol. 5, 1.
  • Guo, Y., Halfter, U., Ishitani, M. and Zhu, J.K. (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 13, 13831400.
  • Hanks, S.K. and Hunter, T. (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576596.
  • Hernandez Sebastia, C., Hardin, S.C., Clouse, S.D., Kieber, J.J. and Huber, S.C. (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch. Biochem. Biophys. 428, 8191.
  • Hrabak, E.M., Chan, C.W., Gribskov, M. et al. (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666680.
  • Huang, J.Z. and Huber, S.C. (2001) Phosphorylation of synthetic peptides by a CDPK and plant SNF1-related protein kinase. Influence of proline and basic amino acid residues at selected positions. Plant Cell Physiol. 42, 10791087.
  • Huang, J.Z., Hardin, S.C. and Huber, S.C. (2001) Identification of a novel phosphorylation motif for CDPKs: phosphorylation of synthetic peptides lacking basic residues at P-3/P-4. Arch. Biochem. Biophys. 393, 6166.
  • Hutti, J.E., Jarrell, E.T., Chang, J.D., Abbott, D.W., Storz, P., Toker, A., Cantley, L.C. and Turk, B.E. (2004) A rapid method for determining protein kinase phosphorylation specificity. Nat. Methods, 1, 2729.
  • Jiang, X. and Wang, Y. (2004) Beta-elimination coupled with tandem mass spectrometry for the identification of in vivo and in vitro phosphorylation sites in maize dehydrin DHN1 protein. Biochemistry, 43, 1556715576.
  • Kagaya, Y., Hobo, T., Murata, M., Ban, A. and Hattori, T. (2002) Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, 14, 31773189.
  • Kelner, A., Pekala, I., Kaczanowski, S., Muszynska, G., Hardie, D.G. and Dobrowolska, G. (2004) Biochemical characterization of the tobacco 42-kD protein kinase activated by osmotic stress. Plant Physiol. 136, 32553265.
  • Kemp, B.E., Pearson, R.B. and House, C.M. (1991) Pseudosubstrate-based peptide inhibitors. Methods Enzymol. 201, 287304.
  • Klimecka, M. and Muszynska, G. (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim. Pol. 54, 219233.
  • Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y. and Hattori, T. (2004) Differential activation of the rice sucrose nonfermenting 1-related protein kinase 2 family by hyperosmotic stress and abscisic acid. Plant Cell, 16, 11631177.
  • Liu, J., Ishitani, M., Halfter, U., Kim, C.S. and Zhu, J.K. (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl Acad. Sci. USA, 97, 37303734.
  • Loog, M., Toomik, R., Sak, K., Muszynska, G., Jarv, J. and Ek, P. (2000) Peptide phosphorylation by calcium-dependent protein kinase from maize seedlings. Eur. J. Biochem. 267, 337343.
  • Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. and Cantley, L.C. (2002a) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell, 10, 151162.
  • Manning, G., Plowman, G.D., Hunter, T. and Sudarsanam, S. (2002b) Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514520.
  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T. and Sudarsanam, S. (2002c) The protein kinase complement of the human genome. Science, 298, 19121934.
  • Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F. and Giraudat, J. (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14, 30893099.
  • Niittyla, T., Fuglsang, A.T., Palmgren, M.G., Frommer, W.B. and Schulze, W.X. (2007) Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteomics, 6, 17111726.
  • Nuhse, T.S., Stensballe, A., Jensen, O.N. and Peck, S.C. (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell, 16, 23942405.
  • Obenauer, J.C., Cantley, L.C. and Yaffe, M.B. (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 36353641.
  • Puhakainen, T., Hess, M.W., Makela, P., Svensson, J., Heino, P. and Palva, E.T. (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54, 743753.
  • Rennefahrt, U.E., Deacon, S.W., Parker, S.A., Devarajan, K., Beeser, A., Chernoff, J., Knapp, S., Turk, B.E. and Peterson, J.R. (2007) Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J. Biol. Chem. 282, 1566715678.
  • Riera, M., Figueras, M., Lopez, C., Goday, A. and Pages, M. (2004) Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc. Natl Acad. Sci. USA, 101, 98799884.
  • Ritsema, T., Joore, J., Van Workum, W. and Pieterse, C.M. (2007) Kinome profiling of Arabidopsis using arrays of kinase consensus substrates. Plant Methods, 3, 3.
  • Rudrabhatla, P., Reddy, M.M. and Rajasekharan, R. (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol. Biol. 60, 293319.
  • Saavedra, L., Svensson, J., Carballo, V., Izmendi, D., Welin, B. and Vidal, S. (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J. 45, 237249.
  • Seki, M., Carninci, P., Nishiyama, Y., Hayashizaki, Y. and Shinozaki, K. (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J. 15, 707720.
  • Seki, M., Narusaka, M., Kamiya, A. et al. (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science, 296, 141145.
  • Shiu, S.H. and Bleecker, A.B. (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl Acad. Sci. USA, 98, 1076310768.
  • Shults, M.D., Janes, K.A., Lauffenburger, D.A. and Imperiali, B. (2005) A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat. Methods, 2, 277283.
  • Songyang, Z., Blechner, S., Hoagland, N., Hoekstra, M.F., Piwnica-Worms, H. and Cantley, L.C. (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4, 973982.
  • Stulemeijer, I.J., Stratmann, J.W. and Joosten, M.H. (2007) Tomato mitogen-activated protein kinases LeMPK1, LeMPK2, and LeMPK3 are activated during the Cf-4/Avr4-induced hypersensitive response and have distinct phosphorylation specificities. Plant Physiol. 144, 14811494.
  • Sugden, C., Crawford, R.M., Halford, N.G. and Hardie, D.G. (1999) Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5′-AMP. Plant J. 19, 433439.
  • Turk, B.E., Hutti, J.E. and Cantley, L.C. (2006) Determining protein kinase substrate specificity by parallel solution-phase assay of large numbers of peptide substrates. Nat. Protoc. 1, 375379.
  • Wang, D., Harper, J.F. and Gribskov, M. (2003) Systematic trans-genomic comparison of protein kinases between Arabidopsis and Saccharomyces cerevisiae. Plant Physiol. 132, 21522165.
  • Zhang, J., Ma, Y., Taylor, S.S. and Tsien, R.Y. (2001) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA, 98, 1499715002.
  • Zhu, S.Y., Yu, X.C., Wang, X.J. et al. (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 19, 30193036.