SEARCH

SEARCH BY CITATION

References

  • Baggett, B.R., Cooper, J.D., Hogan, E.T., Carper, J., Paiva, N.L. and Smith, J.T. (2002) Profiling isoflavonoids found in legume root extracts using capillary electrophoresis. Electrophoresis, 23, 16421651.
  • Bisby, F.A., Buckingham, J. and Harborne, J.B. (1994) Phytochemical Dictionary of the Leguminosae, Volume I. Plants and Their Constituents. New York: Chapman and Hall.
  • Buer, C.S. and Muday, G.K. (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell, 16, 11911205.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Costaglioli, P., Joubes, J., Garcia, C., Stef, M., Arveiler, B., Lessire, R. and Garbay, B. (2005) Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim. Biophys. Acta, 1734, 247258.
  • D’Auria, J.C. (2006) Acyltransferases in plants: a good time to be BAHD. Curr. Opin. Plant Biol. 9, 331340.
  • D’Auria, J.C., Chen, F. and Pichersky, E. (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol. 130, 466476.
  • Deavours, B.E., Liu, C.-J., Naoumkina, M.A., Tang, Y., Farag, M.A., Sumner, L.W., Noel, J.P. and Dixon, R.A. (2006) Functional analysis of members of the isoflavone and isoflavanone-O-methyltransferase gene families from the model legume Medicago truncatula. Plant Mol. Biol. 62, 715733.
  • Dewick, P.M. (1988) Isoflavonoids. In The Flavonoids: Advances in Research Since 1980 (Harborne, J.B., ed). London: Chapman and Hall, pp. 125209.
  • Dewick, P.M. (1993) Isoflavonoids. In The Flavonoids: Advances in Research Since 1986 (Harborne, J.B., ed.). London: Chapman and Hall, pp. 117238.
  • Dixon, R.A. (1999) Isoflavonoids: biochemistry, molecular biology and biological functions. In Comprehensive Natural Products Chemistry (Sankawa, U., ed.). Amsterdam: Elsevier, pp. 773823.
  • Dudareva, N. and Pichersky, E. (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122, 627633.
  • Dudareva, N., D’Auria, J.C., Nam, K.H., Raguso, R.A. and Pichersky, E. (1998) Acetyl-CoA:benzylalcohol acetyltransferase – an enzyme involved in floral scent production in Clarkia breweri. Plant J. 14, 297304.
  • Fedorova, M., Judith, V.D.M., Matsumoto, P.A., Cho, J., Town, C.D., VandenBosch, K.A., Gantt, J.S. and Vance, C.P. (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol. 130, 519537.
  • Feucht, W., Dithmar, H. and Polster, J. (2004a) Nuclei of tea flowers as targets for flavanols. Plant Biol. 6, 696701.
  • Feucht, W., Treutter, D. and Polster, J. (2004b) Flavanol binding of nuclei from tree species. Plant Cell Rep. 22, 430436.
  • Fraser, C.M., Thompson, M.G., Shirley, A.M., Ralph, J., Schoenherr, J.A., Sinlapadech, T., Hall, M.C. and Chapple, C. (2007) Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol. 144, 19861999.
  • Fujiwara, H., Tanaka, Y., Yonekura-Sakakibara, K., Fukuchi-Mizutani, M., Nakao, M., Fukui, Y., Yamaguchi, M., Ashikari, T. and Kusumi, T. (1998) cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J. 16, 421431.
  • Graham, T.L., Kim, J.E. and Graham, M.Y. (1990) Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol. Plant Microbe Interact. 3, 157166.
  • Harborne, J.B. (2000) Advances in flavonoid research since 1992. Phytochemistry, 55, 481504.
  • Hoffmann, L., Maury, S., Martz, F., Geoffroy, P. and Legrand, M. (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278, 95103.
  • Hutzler, P., Fischbach, R., Heller, W., Jungblut, T., Reuber, S., Schmitz, R., Veit, M., Weissenbock, G. and Schnitzler, J.P. (1998) Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 49, 953965.
  • Kachlicki, P., Marczak, L., Kerhoas, L., Einhorn, J. and Stobiecki, M. (2005) Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. J. Mass Spectrom. 40, 10881103.
  • Kerhoas, L., Aouak, D., Cingöz, A., Routaboul, J.-M., Lepiniec, L., Einhorn, J. and Birlirakis, N. (2006) Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds. J. Agric. Food Chem. 54, 66036612.
  • Keminer, O. and Peters, R. (1999) Permeability of single nuclear pores. Biophys. J. 77, 217228.
  • Koester, J., Bussmann, R. and Barz, W. (1984) Malonyl-coenzyme A:isoflavone 7-O-glucoside-6′′-O-malonyltransferase from roots of chick pea (Cicer arietinum L.). Arch. Biochem. Biophys. 234, 513521.
  • Konz, C. and Schell, J. (1986) The promoter of TL-DNA gene controls the tissue specific expression of chaemeric genes carried by a novel type Agrobacterium. Mol. Gen. Genet. 204, 383396.
  • Kudou, S., Fleury, Y., Welti, D., Magnolato, D., Uchida, T., Kitamura, K. and Okubo, K. (1991) Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem. 55, 22272233.
  • Liu, C.-J. and Dixon, R.A. (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell, 13, 26432658.
  • Liu, C.-J., Blount, J.W., Steele, C.L. and Dixon, R.A. (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl Acad. Sci. USA, 99, 1457814583.
  • Liu, C.-J., Huhman, D., Sumner, L.W. and Dixon, R.A. (2003) Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J. 36, 471484.
  • Luo, J., Nishiyama, Y., Fuell, C. et al. (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyltransferases from Arabidopsis thaliana. Plant J. 50, 678695.
  • Ma, X.Y., Koepke, J., Panjikar, S., Fritzsch, G. and Stockigt, J. (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J. Biol. Chem. 280, 1357613583.
  • Mackenbrock, U., Vogelsang, R. and Barz, W. (1992) Isoflavone and pterocarpan malonylglucosides and β-1,3-glucan- and chitin-hydrolases are vacuolar constituents in chickpea (Cicer arietinum L.). Z. Naturforsch. 47c, 815822.
  • Mackenbrock, U., Gunia, W. and Barz, W. (1993) Accumulation and metabolism of medicarpin and maackiain malonylglucosides in elicited chickpea (Cicer arietinum L.) cell suspension cultures. J. Plant Physiol. 142, 385391.
  • Markham, K.R., Ryan, K.G., Gould, K.S. and Richards, G.K. (2000) Cell wall sited flavonoids in lisianthus flower petals. Phytochemistry, 54, 681687.
  • Marti-Renom, M.A., Stuart, A., Fiser, A., Sánchez, R., Melo, F. and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291325.
  • Nakayama, T., Suzuki, H. and Nishino, T. (2003) Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications. J. Mol. Catal. B Enzym. 23, 117132.
  • Naoumkina, M., Farag, M.A., Sumner, L.W., Tang, Y., Liu, C.-J. and Dixon, R.A. (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc. Natl Acad. Sci. USA, 104, 1790917915.
  • O’Maille, P.E., Tsai, M.D., Greenhagen, B.T., Chappell, J. and Noel, J.P. (2004) Gene library synthesis by structure-based combinatorial protein engineering. Methods Enzymol. 388, 7591.
  • Park, H.-H., Hakamatsuka, T., Noguchi, H., Sankawa, U. and Ebizuka, Y. (1992) Isoflavone glucosides exist as their 6′′-O-malonyl esters in Pueraria lobata and its cell suspension cultures. Chem. Pharm. Bull. 40, 19781980.
  • Peer, W.A., Brown, D.E., Tague, B.W., Muday, G.K., Taiz, L. and Murphy, A.S. (2001) Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 126, 536548.
  • Polkowski, K., Popiołkiewicz, J., Krzeczyński, P. et al. (2004) Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett. 203, 5969.
  • Rout, M.P. and Aitchison, J.D. (2001) The nuclear pore complex as a transport machine. J. Biol. Chem. 276, 1659316596.
  • Saslowsky, D.E., Warek, U. and Winkel, B.S. (2005) Nuclear localization of flavonoid enzymes in Arabidopsis. J. Biol. Chem. 280, 2373523740.
  • Sfakianos, J., Coward, L., Kirk, M. and Barnes, S. (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J. Nutr. 127, 12601268.
  • Steffens, J.C. (2000) Acyltransferases in protease’s clothing. Plant Cell, 12, 12531256.
  • St-Pierre, B. and De Luca, V. (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. In Recent Advances in Phytochemistry, vol. 34, Evolution of Metabolic Pathway (Romeo, J.T., Ibrahim, R., Varin, L. and De Luca, V., eds). Amsterdam: Elsevier, pp. 285315.
  • Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Nakao, M., Tanaka, Y., Yamaguchi, M.A., Kusumi, T. and Nishino, T. (2001) Malonyl-CoA:anthocyanin 5-O-glucoside-6′′′-O-malonyltransferase from scarlet sage (Salvia splendens) flowers. Enzyme purification, gene cloning, expression, and characterization. J. Biol. Chem. 276, 4901349019.
  • Suzuki, H., Nakayama, T., Yonekura-Sakakibara, K., Fukui, Y., Nakamura, N., Yamaguchi, M.A., Tanaka, Y., Kusumi, T. and Nishino, T. (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6′′-O-malonyltransferase from dahlia flowers. Plant Physiol. 130, 21422151.
  • Suzuki, H., Nakayama, T. and Nishino, T. (2003) Proposed mechanism and functional amino acid residues of malonyl-CoA:anthocyanin 5-O-glucoside-6′′′-O-malonyltransferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family. Biochemistry, 42, 17641771.
  • Suzuki, H., Nakayama, T., Yamaguchi, M.A. and Nishino, T. (2004a) cDNA cloning and characterization of two Dendranthema x morifolium anthocyanin malonyltransferases with different functional activities. Plant Sci. 166, 8996.
  • Suzuki, H., Sawada, S., Watanabe, K., Nagae, S., Yamaguchi, M.A., Nakayama, T. and Nishino, T. (2004b) Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases. Plant J. 38, 9941003.
  • Suzuki, H., Nishino, T. and Nakayama, T. (2007) cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6′′-O-malonyltransferase. Phytochemistry, 68, 20352042.
  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 46734680.
  • Tzfira, T., Vaidya, M. and Citovsky, V. (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20, 35963607.
  • Unno, H., Ichimaida, F., Suzuki, H., Takahashi, S., Tanaka, Y., Saito, A., Nishino, T., Kusunoki, M. and Nakayama, T. (2007) Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J. Biol. Chem. 282, 1581215822.
  • Walker, K., Fujisaki, S., Long, R. and Croteau, R. (2002) Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis. Proc. Natl Acad. Sci. USA, 99, 1271512720.
  • Williams, C.A. and Harborne, J.B. (1989) Isoflavonoids. Methods Plant Biochem. 1, 421449.
  • Winkel-Shirley, B. (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485493.
  • Xia, Y., Nikolau, B.J. and Schnable, P.S. (1997) Development and hormonal regulation of the Arabidopsis CER2 gene that codes a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol. 115, 925937.
  • Yang, Q., Reinhard, K., Schiltz, E. and Matern, U. (1997) Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Mol. Biol. Rep. 35, 777789.
  • Yonekura-Sakakibara, K., Tanaka, Y., Fukuchi-Mizutani, M., Fujiwara, H., Fukui, Y., Ashikari, T., Murakami, Y., Yamaguchi, M. and Kusumi, T. (2000) Molecular and biochemical characterization of a novel hydroxycinnamoyl-CoA:anthocyanin 3-O-glucoside-6′′-O-acyltransferase from Perilla frutescens. Plant Cell Physiol. 41, 495502.
  • Yu, X.-H. and Liu, C.-J. (2006) Development of an analytical method for genome-wide functional identification of plant acyl-CoA dependent acyltransferases. Anal. Biochem. 358, 146148.