SEARCH

SEARCH BY CITATION

References

  • Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S. and Ecker, J.R. (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 21482152.
  • Andriankaja, A., Boisson-Dernier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D.G. and De Carvalho-Niebel, F. (2007) AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell, 19, 28662885.
  • Ané, J.M., Kiss, G.B., Riely, B.K. et al. (2004) The Medicago truncatula DMI1 gene encodes a novel protein that is required for the early steps of bacterial and fungal symbiosis. Science, 303, 13641367.
  • Ardourel, M., Demont, N., Debellé, F., Maillet, F., De Billy, F., Prome, J.C., Dénarié, J. and Truchet, G. (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell, 6, 13571374.
  • Arrighi, J.F., Barre, A., Ben Amor, B. et al. (2006) The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142, 265279.
  • Boisson-Dernier, A., Chabaud, M., Garcia, F., Bécard, G., Rosenberg, C. and Barker, D.G. (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of fnitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant-Microbe Interact. 14, 695700.
  • Cary, A.J., Liu, W. and Howell, S.H. (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 107, 10751082.
  • Catoira, R., Galera, C., De Billy, F., Penmetsa, R.V., Journet, E.P., Maillet, F., Rosenberg, C., Cook, D.R., Gough, D. and Dénarié, J. (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell, 12, 16471665.
  • Catoira, R., Timmers, A.C.J., Maillet, F., Galear, C., Penmetsa, R.V., Cook, D.R., Gough, C. and Dénarié, J. (2001) The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development, 128, 15071518.
  • Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W. and Ecker, J.R. (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell, 89, 11331144.
  • Choi, H.K., Kim, D., Uhm, T. et al. (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics, 166, 14631502.
  • Cook, D., Dreyer, D., Bonnet, D., Howell, M., Nony, E. and VandenBosch, K. (1995) Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell, 7, 4355.
  • D’Haeze, W., De Rycke, R., Mathis, R., Goormachtig, S., Pagnotta, S., Verplancke, C., Capoen, W. and Holsters, M. (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc. Natl. Acad. Sci. USA 100, 1178911794.
  • Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. and Gianinazzi, S. (1989) First report of non-mycorrhizal plant mutants (Myc–) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci. 60, 215222.
  • Duodu, S., Bhuvaneswari, T.V., Stokkermans, T.J.W. and Peters, N.K. (1999) A positive role for rhizobitoxine in Rhizobium–legume symbiosis. Mol. Plant Microbe Interact. 12, 10821089.
  • Ehrhardt, D.W., Wais, R. and Long, S.R. (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell, 85, 673681.
  • Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P. and Kiss, G.B. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature, 417, 962966.
  • Fernandez-Lopez, M., Goormachtig, S., Gao, M., D’Haeze, W., Van Montagu, M. and Holsters, M. (1998) Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc. Natl. Acad. Sci. USA 95, 1272412728.
  • Geraats, B.P., Bakker, P.A. and Van Loon, L.C. (2002) Ethylene insensitivity impairs resistance to soilborne pathogens in tobacco and Arabidopsis thaliana. Mol. Plant Microbe Interact. 15, 10781085.
  • Gleason, C., Chaudhuri, S., Yang, T., Munoz-Gutierrez, A., Poovaiah, B.W. and Oldroyd, G.E.D. (2006) Legume nodulation independent of rhizobia is induced by a modified calcium/calmodulin activated kinase lacking autoinhibition. Nature, 441, 11491152.
  • Goormachtig, S., Capoen, W., James, E.K. and Holsters, M. (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc. Natl. Acad. Sci. USA 101, 63036308.
  • Gordon, D., Abajian, C. and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195202.
  • Grobbelaar, N., Clarke, B. and Hough, M. (1971) The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant Soil Spec. 215221.
  • Gutterson, N. and Reuber, T.L. (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 7, 465471.
  • Guzman, P. and Ecker, J.R. (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell, 2, 513523.
  • Heidstra, R., Yang, W.C., Yalcin, Y., Peck, S., Emons, A., Van Kammen, A. and Bisseling, T. (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interactions. Development, 124, 17811787.
  • Hoffman, T., Schmidt, J.S., Zheng, X. and Bent, A.F. (1999) Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene-for-gene disease resistance. Plant Physiol. 119, 935950.
  • Imaizumi-Anraku, H., Takeda, N., Charpentier, M. et al. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature, 433, 527531.
  • Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R. and Harrison, M.J. (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc. Nat. Acad. Sci. USA 104, 17201725.
  • Kaló, P., Endre, G., Zimanyi, L., Casandi, G. and Kiss, G.B. (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor. Appl. Genet. 100, 641657.
  • Kaló, P., Gleason, C., Edwards, A. et al. (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science, 308, 17861789.
  • Kanamori, N., Madsen, L.H., Radutoiu, S. et al. (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl Acad. Sci. USA 103, 359364.
  • Kende, H. (1993) Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283307.
  • Kosuta, S., Chabaud, M., Lougnon, G., Gough, C., Dénarié, J., Barker, D.G. and Bécard, G. (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol. 131, 952962.
  • Lévy, J., Bres, C., Geurts, R. et al. (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 303, 13611364.
  • Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T. and Geurts, R. (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 302, 630633.
  • Limpens, E., Ramos, J., Franken, C., Raz, V., Compaan, B., Franssen, H., Bisseling, T. and Geurts, R. (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J. Exp. Bot. 55, 983992.
  • Liu, J., Blaylock, L. and Harrison, M.J. (2004) cDNA arrays as tools to identify mycorrhiza-regulated genes: identification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Can. J. Bot. 82, 11771185.
  • Lopez-Meyer, M. and Harrison, M.J.(2006) An experimental system to synchronize the early events of development of the arbuscular mycorrhizal symbiosis. In Molecular Plant-Microbe Interactions, Volume 5 (Sánchez, F., Quinto, C., López-Lara, I.M. and Geiger, O., eds). Intl Society for Plant-Microbe Interactions, pp. 546551.
  • Lullien, V., Barker, D.G., De Lajudie, P. and Huguet, T. (1987) Plant gene expression in effective and ineffective root nodules of alfalfa (Medicago sativa). Plant Mol. Biol. 9, 469478.
  • Ma, W., Penrose, D.M. and Glick, B.R. (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can. J. Microbiol. 48, 947954.
  • Mewis, I., Appel, H.M., Hom, A., Raina, R. and Schultz, J.C. (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol. 138, 11491162.
  • Middleton, P., Jakab, J., Penmetsa, R.V. et al. (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell, 19, 114.
  • Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E. and Long, S.R. (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc. Natl Acad. Sci. USA 101, 47014705.
  • Murray, J.D., Karas, B.J., Sato, S., Tabata, S., Amyot, L. and Szczyglowski, K. (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 315, 101104.
  • Nam, Y.W., Penmetsa, R.V., Endre, G., Uribe, P., Kim, D.J. and Cook, D.R. (1998) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene response loci. Theor. Appl. Genet. 98, 638646.
  • Nevo, Y. and Nelson, N. (2006) The NRAMP family of metal-ion transporters. Biochim. Biophys. Acta 1763, 609620.
  • Nukui, N., Ezura, H., Yuhashi, K., Yasuta, T. and Minamisawa, K. (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol. 41, 893897.
  • Nukui, N., Ezura, H. and Minamisawa, K. (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol. 45, 427435.
  • Olah, B., Briere, C., Bécard, G., Dénarié, J. and Gough, C. (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signaling pathway. Plant J. 44, 195207.
  • Oldroyd, G.E. and Downie, J.A. (2006) Nuclear calcium changes at the core of symbiosis signaling. Curr. Opin. Plant Biol. 9, 351357.
  • Oldroyd, G.E.D., Engstrom, E.M. and Long, S.R. (2001) Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell, 13, 18351849.
  • Oldroyd, G.E.D., Mitra, R.M., Wais, R.J. and Long, S.R. (2002) Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway. Plant J. 28, 191199.
  • Park, S.Y. and Nam, Y.W. (2006) Construction of bacterial artificial chromosome library containing large BamHI genomic fragments from Medicago truncatula and identification of clones linked to hyper-nodulating genes. J. Microbiol. Biotechnol. 16, 256263.
  • Penmetsa, R.V. and Cook, D.R. (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science, 275, 527530.
  • Penmetsa, R.V. and Cook, D.R. (2000) Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol. 123, 13871397.
  • Penmetsa, R.V., Frugoli, J.A., Smith, L., Long, S.R. and Cook, D.R. (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol. 131, 9981008.
  • Radutoiu, S., Madsen, L.H., Madsen, E.B. et al. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 425, 585592.
  • Radutoiu, S., Madsen, L.H., Madsen, E.B., Jurkiewicz, A., Fukai, E., Quistgaard, E.M., Albrektsen, A.S., James, E.K., Thirup, S. and Stougaard, J. (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J. 26, 39233935.
  • Roberts, I.N., Lloyd, C.W. and Roberts, K. (1985) Ethylene-induced microtubule reorientations: mediation by helical arrays. Planta, 164, 439447.
  • Ruan, X. and Peters, N.K. (1992) Isolation and characterization of rhizobitoxine mutants of Bradyrhizobium japonicum. J. Bacteriol. 174, 34673473.
  • Saito, K., Yoshikawa, M., Yano, K. et al. (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell, 19, 610624.
  • Schmidt, J.S., Harper, J.E., Hoffman, T.K. and Bent, A.F. (1999) Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol. 119, 951960.
  • Smit, P., Raedts, J., Portyanko, V., Debellé, F., Gough, C., Bisseling, T. and Geurts, R. (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 308, 17891791.
  • Smit, P., Limpens, E., Geurts, R., Fedorova, E., Dolgikh, E., Gough, C. and Bisseling, T. (2007) Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol. 145, 183191.
  • St-Arnaud, M., Hamel, C., Vimard, B., Caron, M. and Fortin, J.A. (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100, 328332.
  • Stracke, S., Kistner, C., Yoshida, S. et al. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 417, 959962.
  • Su, W. and Howell, S.H. (1992) A single genetic locus, ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentrations of cytokinin. Plant Physiol. 99, 15691574.
  • Sugawara, M., Okazaki, S., Nukui, N., Ezura, H., Mitsui, H. and Minamisawa, K. (2006) Rhizobitoxine modulates plant–microbe interactions by ethylene inhibition. Biotechnol. Adv. 24, 382388.
  • Thomma, B.P., Eggermont, K., Tierens, K.F. and Broekaert, W.F. (1999) Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121, 10931102.
  • Vogel, J.P., Schuerman, P., Woeste, K., Brandstatter, I. and Kieber, J.J. (1998) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics, 149, 417427.
  • Wang, K.L.C., Li, H. and Ecker, J.R. (2002) Ethylene biosynthesis and signaling networks. Plant Cell, 14, S131S151.
  • Xie, Z.P., Staehelin, C., Wiemken, A. and Boller, T. (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J. Plant Physiol. 149, 690694.
  • Yuhashi, K., Ichikawa, N., Ezura, H., Akao, S., Minakawa, Y., Nukui, N., Yasuta, T. and Minamisawa, K. (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl. Environ. Microbiol. 66, 26582663.