SEARCH

SEARCH BY CITATION

Keywords:

  • QQS;
  • protein with unknown functions;
  • starch regulation;
  • bioinformatics;
  • Arabidopsis

Summary

Little is known about the role of proteins that lack primary sequence homology with any known motifs (proteins with unknown functions, PUFs); these comprise more than 10% of all proteins. This paper offers a generalized experimental strategy for identifying the functions of such proteins, particularly in relation to metabolism. Using this strategy, we have identified a novel regulatory function for Arabidopsis locus At3g30720 (which we term QQS for qua-quine starch). QQS expression, revealed through global mRNA profiling, is up-regulated in an Arabidopsis Atss3 mutant that lacks starch synthase III and has increased leaf starch content. Analysis of public microarray data using MetaOmGraph (metnetdb.org), in combination with transgenic Arabidopsis lines containing QQS promoter–GUS transgenes, indicated that QQS expression responds to a variety of developmental/genetic/environmental perturbations. In addition to the increase in the Atss3 mutant, QQS is up-regulated in the carbohydrate mutants mex1 and sis8. A 586 nt sequence for the QQS mRNA was identified by 5′ and 3′ RACE experiments. The QQS transcript is predicted to encode a protein of 59 amino acids, whose expression was confirmed by immunological Western blot analysis. The QQS gene is recognizable in sequenced Arabidopsis ecotypes, but is not identifiable in any other sequenced species, including the closely related Brassica napus. Transgenic RNA interference lines in which QQS expression is reduced show excess leaf starch content at the end of the illumination phase of a diurnal cycle. Taken together, the data identify QQS as a potential novel regulator of starch biosynthesis.