SEARCH

SEARCH BY CITATION

References

  • Barillari, J., Gueyrard, D., Rollin, P. and Iori, R. (2001) Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenylethyl isothiocyanate. Fitoterapia, 72, 760764.
  • Bino, R.J., Ric de Vos, C.H., Lieberman, M., Hall, R.D., Bovy, A., Jonker, H.H., Tikunov, Y., Lommen, A., Moco, S. and Levin, I. (2005) The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytol. 166, 427438.
  • Boatright, J., Negre, F., Chen, X., Kish, C.M., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 19932011.
  • Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. and Lamb, C. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 12, 23832394.
  • Brader, G., Mikkelsen, M.D., Halkier, B.A. and Tapio Palva, E. (2006) Altering glucosinolate profiles modulates disease resistance in plants. Plant J. 46, 758767.
  • Byng, G., Whitaker, R., Flick, C. and Jensen, R.A. (1981) Enzymology of l-tyrosine biosynthesis in corn (Zea mays). Phytochemistry, 6, 12891292.
  • Cho, M.-H., Corea, O.R., Yang, H. et al. (2007) Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases.. J. Biol. Chem. 282, 3082730835.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Connelly, J.A. and Conn, E.E. (1986) Tyrosine biosynthesis in Sorghum bicolor: isolation and regulatory properties of arogenate dehydrogenase. Z. Naturforsch. [C], 41, 6978.
  • De-Eknamkul, W. and Ellis, B.E. (1988) Purification and characterization of prephenate aminotransferase from Anchusa officinalis cell cultures. Arch. Biochem. Biophys. 267, 8794.
  • DellaPenna, D. and Pogson, B. (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57, 711738.
  • Dubouzet, J.G., Ishihara, A., Matsuda, F., Miyagawa, H., Iwata, H. and Wakasa, K. (2007) Integrated metabolomic and transcriptomic analyses of high-tryptophan rice expressing a mutant anthranilate synthase alpha subunit. J. Exp. Bot. 58, 33093321.
  • Eberhard, J., Ehrler, T.T., Epple, P., Felix, G., Raesecke, H.R., Amrhein, N. and Schmid, J. (1996) Cytosolic and plastidic chorismate mutase isozymes from Arabidopsis thaliana: molecular characterization and enzymatic properties. Plant J. 10, 815821.
  • Fraser, P.D., Pinto, M.E., Holloway, D.E. and Bramley, P.M. (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J. 24, 551558.
  • Gaines, C.G., Gyng, G.S., Whitaker, R.J. and Jensen, R.A. (1982) l-tyrosine regulation and biosynthesis via arogenate dehydrogenase in suspension-cultured cells of Nicotiana sylvestris Speg. et Comes. Planta, 156, 233240.
  • Gelfand, D.H. and Rudo, N. (1977) Mapping of the aspartate and aromatic amino acid aminotransferase genes tyrB and aspC. J. Bacteriol. 130, 441444.
  • Gleave, A.P. (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 12031207.
  • Graser, G., Oldham, N.J., Brown, P.D., Temp, U. and Gershenzon, J. (2001) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry, 57, 2332.
  • Haslam, E. (1993) Shikimic Acid Metabolism and Metabolites. New York: John Wiley.
  • Herrmann, K. (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol. 107, 712.
  • Hochberg, Y. and Benjamini, Y. (1990) More powerful procedures for multiple significance testing. Stat. Med. 9, 811818.
  • Howles, P.A., Sewalt, V., Paiva, N.L., Elkind, Y., Bate, N.J., Lamb, C. and Dixon, R.A. (1996) Overexpression of l-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol. 112, 16171624.
  • Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U. and Speed, T.P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249264.
  • Ishihara, A., Asada, Y., Takahashi, Y., Yabe, N., Komeda, Y., Nishioka, T., Miyagawa, H. and Wakasa, K. (2006) Metabolic changes in Arabidopsis thaliana expressing the feedback-resistant anthranilate synthase alpha subunit gene OASA1D. Phytochemistry, 67, 23492362.
  • Kaminaga, Y., Schnepp, J., Peel, G. et al. (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281, 2335723366.
  • Keller, B., Keller, E., Gorisch, H. and Lingens, F. (1983) Phenylalanine and tyrosine biosynthesis in Streptomycetes. Hoppe Seylers Z. Physiol. Chem. 364, 455459. (in German).
  • Kisaka, H., Kisaka, M. and Kameya, T. (1996) Characterization of interfamilial somatic hybrids between 5-methyltryptophan resistant rice (Oryza sativa L.) and 5MT-sensitive carrot (Daucus carota L.); expression of resistance to 5MT by the somatic hybrids. Breed. Sci. 46, 221226.
  • Kreps, J.A., Ponappa, T., Dong, W.Q. and Town, C.D. (1996) Molecular basis of α-methyltryptophan resistance in amt-1, a mutant of Arabidopsis thaliana with altered tryptophan metabolism. Plant Physiol. 110, 11591165.
  • Kubasek, W.L., Shirley, B.W., McKillop, A., Goodman, H.M., Briggs, W. and Ausubel, F.M. (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell, 4, 12291236.
  • Kuramitsu, S., Inoue, K., Ogawa, T., Ogawa, H. and Kagamiyama, H. (1985) Aromatic amino acid aminotransferase of Escherichia coli: nucleotide sequence of the tyrB gene. Biochem. Biophys. Res. Commun. 133, 134139.
  • Li, J. and Last, R.L. (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol. 110, 5159.
  • Li, J., Ou-Lee, T.M., Raba, R., Amundson, R.G. and Last, R.L. (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell, 5, 171179.
  • Lichtenthaler, H.K., Buschmann, C., Rinderle, U. and Schmuck, G. (1986) Application of chlorophyll fluorescence in ecophysiology. Radiat. Environ. Biophys. 25, 297308.
  • Malitsky, S., Blum, E., Less, H., Venger, I., Elbaz, M., Morin, S., Eshed, Y. and Aharoni, A. (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol. 148, 20212049.
  • Mintz-Oron, S., Mandel, T., Rogachev, I. et al. (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol. 147, 823851.
  • Mita, S., Murano, N., Akaike, M. and Nakamura, K. (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J. 11, 841851.
  • Mobley, E.M., Kunkel, B.N. and Keith, B. (1999) Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana. Gene, 240, 115123.
  • Pallett, K., Little, J., Sheekey, M. and Veerasekaran, P. (1998) The mode of action of isoxaflutole: 1. Physiological effects, metabolism and selectivity. Pestic. Biochem. Physiol. 62, 113124.
  • Patel, N., Pierson, D.L. and Jensen, R.A. (1977) Dual enzymatic routes to l-tyrosine and l-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J. Biol. Chem. 252, 58395846.
  • Reichelt, M., Brown, P.D., Schneider, B., Oldham, N.J., Stauber, E., Tokuhisa, J., Kliebenstein, D.J., Mitchell-Olds, T. and Gershenzon, J. (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 59, 663671.
  • Rippert, P. and Matringe, M. (2002) Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains. Plant Mol. Biol. 48, 361368.
  • Rippert, P., Scimemi, C., Dubald, M. and Matringe, M. (2004) Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol. 134, 92100.
  • Romero, R., Roberts, M. and Phillipson, J. (1995) Chorismate mutase in microorganisms and plants. Phytochemistry, 40, 10151025.
  • Saeed, A.I., Sharov, V., White, J. et al. (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques, 34, 374378.
  • Scholz, M., Gatzek, S., Sterling, A., Fiehn, O. and Selbig, J. (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics, 20, 24472454.
  • Schulz, A., Ort, O., Beyer, P. and Klenig, H. (1993) A 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 318, 162166.
  • Secor, J. (1994) Inhibition of barnyardgrass 4-hydroxyphenylpyruvate dioxygenase by sulcotrione. Plant Physiol. 106, 14291433.
  • Shaul, O. and Galili, G. (1993) Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Mol. Biol. 23, 759768.
  • Siehl, D.L. and Conn, E.E. (1988) Kinetic and regulatory properties of arogenate dehydratase in seedlings of Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 260, 822829.
  • Siehl, D.L., Connelly, J.A. and Conn, E.E. (1986) Tyrosine biosynthesis in Sorghum bicolor: characteristics of prephenate aminotransferase. Z. Naturforsch. [C], 41, 7986.
  • Smith, C., Want, E., O’Maille, G., Abagyan, R. and Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779787.
  • Stepansky, A. and Galili, G. (2003) Synthesis of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is concertedly regulated by metabolic and stress-associated signals. Plant Physiol. 133, 14071415.
  • Voll, L.M., Allaire, E.E., Fiene, G. and Weber, A.P. (2004) The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism. Plant Physiol. 136, 30583069.
  • Watanabe, S., Hayashi, K., Yagi, K., Asai, T., MacTavish, H., Picone, J., Turnbull, C. and Watanabe, N. (2002) Biogenesis of 2-phenylethanol in rose flowers: incorporation of [2H8]l-phenylalanine into 2-phenylethanol and its β-d-glucopyranoside during the flower opening of Rosa‘Hoh-Jun’ and Rosa damascena Mill. Biosci. Biotechnol. Biochem. 66, 943947.
  • Widholm, J.M. (1972) Anthranilate synthetase from 5-methyltryptophan-susceptible and -resistant cultured Daucus carota cells. Biochim. Biophys. Acta, 279, 4857.
  • Wittstock, U. and Halkier, B.A. (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J. Biol. Chem. 275, 1465914666.
  • Yamada, T., Matsuda, F., Kasai, K., Fukuoka, S., Kitamura, K., Tozawa, Y., Miyagawa, H. and Wakasa, K. (2008) Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. Plant Cell, 20, 13161329.
  • Zhang, S., Pohnerts, G., Kongsaeree, P., Wilson, D.B., Clardy, J. and Ganem, B. (1998) Chorismate mutase–prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J. Biol. Chem. 273, 62486253.