SEARCH

SEARCH BY CITATION

References

  • An, G., Mitra, A., Choi, H.K., Costa, M.A., An, K., Thornburg, R.W. and Ryan, C.A. (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell, 1, 115122.
  • Arnould, S., Chames, P., Perez, C. et al. (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J. Mol. Biol. 355, 443458.
  • Arnould, S., Perez, C., Cabaniols, J.P., Smith, J., Gouble, A., Grizot, S., Epinat, J.C., Duclert, A., Duchateau, P. and Paques, F. (2007) Engineered I–CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J. Mol. Biol. 371, 4965.
  • Ashworth, J., Havranek, J.J., Duarte, C.M., Sussman, D., Monnat, R.J. Jr, Stoddard, B.L. and Baker, D. (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, 656659.
  • Beumer, K.J., Trautman, J.K., Bozas, A., Liu, J.L., Rutter, J., Gall, J.G. and Carroll, D. (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc. Natl Acad. Sci. USA, 105, 1982119826.
  • Bibikova, M., Golic, M., Golic, K.G. and Carroll, D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 11691175.
  • Bibikova, M., Beumer, K., Trautman, J.K. and Carroll, D. (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.
  • Cai, C.Q., Doyon, Y., Ainley, W.M. et al. (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol. Biol. 69, 699709.
  • Carroll, D. (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 14631468.
  • Chevalier, B., Turmel, M., Lemieux, C., Monnat, R.J. Jr, and Stoddard, B.L. (2003) Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I CreI and I MsoI. J. Mol. Biol. 329, 253269.
  • Christensen, A.H. and Quail, P.H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5, 213218.
  • Cornu, T.I., Thibodeau-Beganny, S., Guhl, E., Alwin, S., Eichtinger, M., Joung, J.K. and Cathomen, T. (2008) DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol. Ther. 16, 352358.
  • D’Halluin, K., Vanderstraeten, C., Stals, E., Cornelissen, M. and Ruiter, R. (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol. J. 6, 93102.
  • Djukanovic, V., Orczyk, W., Gao, H., Sun, X., Garrett, N., Zhen, S., Gordon-Kamm, W., Barton, J. and Lyznik, L.A. (2006) Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. Plant Biotechnol. J. 4, 345357.
  • Doyon, Y., McCammon, J.M., Miller, J.C. et al. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 26, 702708.
  • Durrenberger, F. and Rochaix, J.D. (1993) Characterization of the cleavage site and the recognition sequence of the I CreI DNA endonuclease encoded by the chloroplast ribosomal intron of Chlamydomonas reinhardtii. Mol. Gen. Genet. 236, 409414.
  • Fajardo-Sanchez, E., Stricher, F., Paques, F., Isalan, M. and Serrano, L. (2008) Computer design of obligate heterodimer meganucleases allows efficient cutting of custom DNA sequences. Nucleic Acids Res. 36, 21632173.
  • Foley, J.E., Yeh, J.R., Maeder, M.L., Reyon, D., Sander, J.D., Peterson, R.T. and Joung, J.K. (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE, 4, e4348.
  • Grizot, S., Smith, J., Daboussi, F. et al. (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res. 37, 54055419.
  • Guhan, N. and Muniyappa, K. (2003) Structural and functional characteristics of homing endonucleases. Crit. Rev. Biochem. Mol. Biol. 38, 199248.
  • Honma, M., Sakuraba, M., Koizumi, T., Takashima, Y., Sakamoto, H. and Hayashi, M. (2007) Non-homologous end-joining for repairing I SceI-induced DNA double strand breaks in human cells. DNA Repair (Amst.), 6, 781788.
  • Kim, Y.G., Cha, J. and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad.Sci. USA, 93, 11561160.
  • Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. (1996) Vectors carrying two separate T DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165174.
  • Lloyd, A., Plaisier, C.L., Carroll, D. and Drews, G.N. (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA, 102, 22322237.
  • Maeder, M.L., Thibodeau-Beganny, S., Osiak, A. et al. (2008) Rapid ‘open-source’ engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell, 31, 294301.
  • Maggert, K.A. and Golic, K.G. (2005) Highly efficient sex chromosome interchanges produced by I CreI expression in Drosophila. Genetics 171, 11031114.
  • Mansour, W.Y., Schumacher, S., Rosskopf, R., Rhein, T., Schmidt-Petersen, F., Gatzemeier, F., Haag, F., Borgmann, K., Willers, H. and Dahm-Daphi, J. (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res. 36, 40884098.
  • Meng, X., Noyes, M.B., Zhu, L.J., Lawson, N.D. and Wolfe, S.A. (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 26, 695701.
  • Moehle, E.A., Rock, J.M., Lee, Y.L., Jouvenot, Y., DeKelver, R.C., Gregory, P.D., Urnov, F.D. and Holmes, M.C. (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA, 104, 30553060.
  • Morton, J., Davis, M.W., Jorgensen, E.M. and Carroll, D. (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl Acad. Sci. USA, 103, 1637016375.
  • Moure, C.M., Gimble, F.S. and Quiocho, F.A. (2008) Crystal structures of I SceI complexed to nicked DNA substrates: snapshots of intermediates along the DNA cleavage reaction pathway. Nucleic Acids Res. 36, 32873296.
  • Orel, N., Kyryk, A. and Puchta, H. (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35, 604612.
  • Paques, F. and Duchateau, P. (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr. Gene Ther. 7, 4966.
  • Porteus, M.H. and Carroll, D. (2005) Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967973.
  • Prieto, J., Redondo, P., Padro, D., Arnould, S., Epinat, J.C., Paques, F., Blanco, F.J. and Montoya, G. (2007) The C terminal loop of the homing endonuclease I CreI is essential for site recognition, DNA binding and cleavage. Nucleic Acids Res. 35, 32623271.
  • Prieto, J., Epinat, J.C., Redondo, P., Ramos, E., Padro, D., Cedrone, F., Montoya, G., Paques, F. and Blanco, F.J. (2008) Generation and analysis of mesophilic variants of the thermostable archaeal I DmoI homing endonuclease. J. Biol. Chem. 283, 43644374.
  • Puchta, H. (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56, 114.
  • Rebuzzini, P., Khoriauli, L., Azzalin, C.M., Magnani, E., Mondello, C. and Giulotto, E. (2005) New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst.), 4, 546555.
  • Redondo, P., Prieto, J., Munoz, I.G. et al. (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456, 107111.
  • Rosen, L.E., Morrison, H.A., Masri, S., Brown, M.J., Springstubb, B., Sussman, D., Stoddard, B.L. and Seligman, L.M. (2006) Homing endonuclease I CreI derivatives with novel DNA target specificities. Nucleic Acids Res. 34, 47914800.
  • Salomon, S. and Puchta, H. (1998) Capture of genomic and T DNA sequences during double-strand break repair in somatic plant cells. EMBO J. 17, 60866095.
  • Santiago, Y., Chan, E., Liu, P.Q. et al. (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl Acad. Sci. USA, 105, 58095814.
  • Seligman, L.M., Chisholm, K.M., Chevalier, B.S., Chadsey, M.S., Edwards, S.T., Savage, J.H. and Veillet, A.L. (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res. 30, 38703879.
  • Shukla, V.K., Doyon, Y., Miller, J.C. et al. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437441.
  • Silva, G.H. and Belfort, M. (2004) Analysis of the LAGLIDADG interface of the monomeric homing endonuclease I DmoI. Nucleic Acids Res. 32, 31563168.
  • Smith, J., Grizot, S., Arnould, S. et al. (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res. 34, e149.
  • Stephens, K.M., Monnat, R.J. Jr, Heath, P.J. and Stoddard, B.L. (1997) Crystallization and preliminary X ray studies of I CreI: a group I intron-encoded endonuclease from C. reinhardtii. Proteins, 28, 137139.
  • Stoddard, B.L. (2005) Homing endonuclease structure and function. Q. Rev. Biophys. 38, 4995.
  • Szczepek, M., Brondani, V., Buchel, J., Serrano, L., Segal, D.J. and Cathomen, T. (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786793.
  • Thompson, A.J., Yuan, X., Kudlicki, W. and Herrin, D.L. (1992) Cleavage and recognition pattern of a double-strand-specific endonuclease (I creI) encoded by the chloroplast 23S rRNA intron of Chlamydomonas reinhardtii. Gene 119, 247251.
  • Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K. and Voytas, D.F. (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442445.
  • Wright, D.A., Townsend, J.A., Winfrey, R.J. Jr, Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D. and Voytas, D.F. (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693705.
  • Yang, M., Djukanovic, V., Stagg, J., Lenderts, B., Bidney, D., Falco, S.C. and Lyznik, L.A. (2009) Targeted mutagenesis in the progeny of maize transgenic plants. Plant Mol. Biol. 70, 669779.