SEARCH

SEARCH BY CITATION

References

  • Achard, P., Baghour, M., Chapple, A., Hedden, P., Van Der Straeten, D., Genschik, P., Moritz, T. and Harberd, N.P. (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl Acad. Sci. USA, 104, 64846489.
  • Aida, M. and Tasaka, M. (2006a) Genetic control of shoot organ boundaries. Curr. Opin. Plant Biol. 9, 7277.
  • Aida, M. and Tasaka, M. (2006b) Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol. Biol. 60, 915928.
  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 9, 841857.
  • Aida, M., Ishida, T. and Tasaka, M. (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 126, 15631570.
  • Alvarez, J. and Smyth, D.R. (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development, 126, 23772386.
  • Alvarez, J.P., Goldshmidt, A., Efroni, I., Bowman, J.L. and Eshed, Y. (2009) The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis. Plant Cell, 21, 13731393.
  • Alves-Ferreira, M., Wellmer, F., Banhara, A., Kumar, V., Riechmann, J.L. and Meyerowitz, E.M. (2007) Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol. 145, 747762.
  • Amasino, R. (2010) Seasonal and developmental timing of flowering. Plant J. 61, 10011013.
  • Anastasiou, E. and Lenhard, M. (2007) Growing up to one’s standard. Curr. Opin. Plant Biol. 10, 6369.
  • Anastasiou, E., Kenz, S., Gerstung, M., MacLean, D., Timmer, J., Fleck, C. and Lenhard, M. (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell, 13, 843856.
  • Aukerman, M.J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 15, 27302741.
  • Baker, C.C., Sieber, P., Wellmer, F. and Meyerowitz, E.M. (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 15, 303315.
  • Balanza, V., Navarrete, M., Trigueros, M. and Ferrandiz, C. (2006) Patterning the female side of Arabidopsis: the importance of hormones. J. Exp. Bot. 57, 34573469.
  • Baumann, K., Perez-Rodriguez, M., Bradley, D., Venail, J., Bailey, P., Jin, H., Koes, R., Roberts, K. and Martin, C. (2007) Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development, 134, 16911701.
  • Blazquez, M.A. and Weigel, D. (2000) Integration of floral inductive signals in Arabidopsis. Nature, 404, 889892.
  • Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 10, 791800.
  • Bomblies, K., Wang, R.L., Ambrose, B.A., Schmidt, R.J., Meeley, R.B. and Doebley, J. (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development, 130, 23852395.
  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1989) Genes directing flower development in Arabidopsis. Plant Cell, 1, 3752.
  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 120.
  • Bowman, J.L., Sakai, H., Jack, T., Weigel, D., Mayer, U. and Meyerowitz, E.M. (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development, 114, 599615.
  • Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 119, 721743.
  • Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. and Coen, E. (1997) Inflorescence commitment and architecture in Arabidopsis. Science, 275, 8083.
  • Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R. (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289, 617619.
  • Breuil-Broyer, S., Morel, P., De Almeida-Engler, J., Coustham, V., Negrutiu, I. and Trehin, C. (2004) High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J. 38, 182192.
  • Brewer, P.B., Howles, P.A., Dorian, K., Griffith, M.E., Ishida, T., Kaplan-Levy, R.N., Kilinc, A. and Smyth, D.R. (2004) PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development, 131, 40354045.
  • Busch, M.A., Bomblies, K. and Weigel, D. (1999) Activation of a floral homeotic gene in Arabidopsis. Science, 285, 585587.
  • Canales, C., Bhatt, A.M., Scott, R. and Dickinson, H. (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol. 12, 17181727.
  • Carles, C.C. and Fletcher, J.C. (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci. 8, 394401.
  • Carles, C.C., Choffnes-Inada, D., Reville, K., Lertpiriyapong, K. and Fletcher, J.C. (2005) ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development, 132, 897911.
  • Carpenter, R. and Coen, E.S. (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 4, 14831493.
  • Castillejo, C., Romera-Branchat, M. and Pelaz, S. (2005) A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J. 43, 586596.
  • Chae, E., Tan, Q.K., Hill, T.A. and Irish, V.F. (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development, 135, 12351245.
  • Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 20222025.
  • Chen, X. and Meyerowitz, E.M. (1999) HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway. Mol. Cell, 3, 349360.
  • Cheng, Y., Kato, N., Wang, W., Li, J. and Chen, X. (2003) Two RNA binding proteins, HEN4 and HUA1, act in the processing of AGAMOUS pre-mRNA in Arabidopsis thaliana. Dev. Cell, 4, 5366.
  • Cheng, Y., Dai, X. and Zhao, Y. (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20, 17901799.
  • Cheng, H., Song, S., Xiao, L., Soo, H.M., Cheng, Z., Xie, D. and Peng, J. (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet, 5, e1000440.
  • Chuang, C.F., Running, M.P., Williams, R.W. and Meyerowitz, E.M. (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev. 13, 334344.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature, 353, 3137.
  • Coen, E.S., Romero, J.M., Doyle, S., Elliot, R., Murphy, G. and Carpenter, R. (1990) Floricaula : a homeotic gene required for flower development in Antirrhinum majus. Cell, 63, 13111322.
  • Conti, L. and Bradley, D. (2007) TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell, 19, 767778.
  • Das, P., Ito, T., Wellmer, F., Vernoux, T., Dedieu, A., Traas, J. and Meyerowitz, E.M. (2009) Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development, 136, 16051611.
  • Dathan, N., Zaccaro, L., Esposito, S., Isernia, C., Omichinski, J.G., Riccio, A., Pedone, C., Di Blasio, B., Fattorusso, R. and Pedone, P.V. (2002) The Arabidopsis SUPERMAN protein is able to specifically bind DNA through its single Cys2-His2 zinc finger motif. Nucleic Acids Res. 30, 49454951.
  • Dinneny, J.R., Yadegari, R., Fischer, R.L., Yanofsky, M.F. and Weigel, D. (2004) The role of JAGGED in shaping lateral organs. Development, 131, 11011110.
  • Dinneny, J.R., Weigel, D. and Yanofsky, M.F. (2006) NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development, 133, 16451655.
  • Disch, S., Anastasiou, E., Sharma, V.K., Laux, T., Fletcher, J.C. and Lenhard, M. (2006) The E3 ubiquitin ligase BIG BROTHER controls arabidopsis organ size in a dosage-dependent manner. Curr. Biol. 16, 272279.
  • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 19351940.
  • Drews, G.N., Bowman, J.L. and Meyerowitz, E.M. (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETELA2 product. Cell, 65, 9911002.
  • Egea-Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 53705379.
  • Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q.J., Gerentes, D., Perez, P. and Smyth, D.R. (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 8, 155168.
  • Eriksson, S., Bohlenius, H., Moritz, T. and Nilsson, O. (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell, 18, 21722181.
  • Fan, H.Y., Hu, Y., Tudor, M. and Ma, H. (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12, 9991010.
  • Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M. and Colombo, L. (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 15, 26032611.
  • Feng, X. and Dickinson, H.G. (2007) Packaging the male germline in plants. Trends Genet. 23, 503510.
  • Ferrandiz, C., Pelaz, S. and Yanofsky, M.F. (1999) Control of carpel and fruit development in Arabidopsis. Annu. Rev. Biochem. 68, 321354.
  • Ferrandiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000a) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development, 127, 725734.
  • Ferrandiz, C., Liljegren, S.J. and Yanofsky, M.F. (2000b) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 289, 436438.
  • Flanagan, C.A. and Ma, H. (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild type and mutant Arabidopsis flowers. Plant Mol. Biol. 26, 581595.
  • De Folter, S., Immink, R.G., Kieffer, M. et al. (2005) Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factors. Plant Cell, 17, 14241433.
  • Fulton, L., Batoux, M., Vaddepalli, P., Yadav, R.K., Busch, W., Andersen, S.U., Jeong, S., Lohmann, J.U. and Schneitz, K. (2009) DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genet, 5, e1000355.
  • Goethe, J.W. (1790) Goethe’s botany: the metamorphosis of plants. Translated by A. Arber as Goethe’s Botany (1946). Chronica Botanica, 10, 63126.
  • Goldberg, R.B., Beals, T.P. and Sanders, P.M. (1993) Anther development: basic principles and practical applications. Plant Cell, 5, 12171229.
  • Goldshmidt, A., Alvarez, J.P., Bowman, J.L. and Eshed, Y. (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell, 20, 12171230.
  • Gomez-Mena, C., De Folter, S., Costa, M.M., Angenent, G.C. and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132, 429438.
  • Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 15481560.
  • Goto, K., Kyozuka, J. and Bowman, J.L. (2001) Turning floral organs into leaves, leaves into floral organs. Curr. Opin. Genet. Dev. 11, 449456.
  • Grandjean, O., Vernoux, T., Laufs, P., Belcram, K., Mizukami, Y. and Traas, J. (2004) In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell, 16, 7487.
  • Gregis, V., Sessa, A., Colombo, L. and Kater, M.M. (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell, 18, 13731382.
  • Gregis, V., Sessa, A., Colombo, L. and Kater, M.M. (2008) AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J. 56, 891902.
  • Gregis, V., Sessa, A., Dorca-Fornell, C. and Kater, M.M. (2009) The Arabidopsis Floral Meristem Identity Genes AP1, AGL24 and SVP Directly Repress Class B and C Floral Homeotic Genes. Plant J., 60, 626637.
  • Gremski, K., Ditta, G. and Yanofsky, M.F. (2007) The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134, 35933601.
  • Griffith, M.E., Da Silva Conceicao, A. and Smyth, D.R. (1999) PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development, 126, 56355644.
  • Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1994) Regulation of the Arabidopsis homeotic gene APETALA1. Cell, 76, 131143.
  • Hames, C., Ptchelkine, D., Grimm, C., Thevenon, E., Moyroud, E., Gerard, F., Martiel, J.L., Benlloch, R., Parcy, F. and Muller, C.W. (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J. 27, 26282637.
  • Heisler, M.G., Atkinson, A., Bylstra, Y.H., Walsh, R. and Smyth, D.R. (2001) SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development, 128, 10891098.
  • Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A. and Meyerowitz, E.M. (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 18991911.
  • Hempel, F.D., Weigel, D., Mandel, M.A., Ditta, G., Zambryski, P.C., Feldman, L.J. and Yanofsky, M.F. (1997) Floral determination and expression of floral regulatory genes in Arabidopsis. Development, 124, 38453853.
  • Hennig, L., Gruissem, W., Grossniklaus, U. and Kohler, C. (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol. 135, 17651775.
  • Hill, J.P. and Lord, E.M. (1989) Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can. J. Bot. 67, 29222936.
  • Hill, T.A., Day, C.D., Zondlo, S.C., Thackeray, A.G. and Irish, V.F. (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development, 125, 17111721.
  • Hiratsu, K., Ohta, M., Matsui, K. and Ohme-Takagi, M. (2002) The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett. 514, 351354.
  • Hiratsu, K., Matsui, K., Koyama, T. and Ohme-Takagi, M. (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733739.
  • Hiratsu, K., Mitsuda, N., Matsui, K. and Ohme-Takagi, M. (2004) Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem. Biophys. Res. Commun. 321, 172178.
  • Hong, R.L., Hamaguchi, L., Busch, M.A. and Weigel, D. (2003) Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell, 15, 12961309.
  • Honma, T. and Goto, K. (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development, 127, 20212030.
  • Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 469471.
  • Huala, E. and Sussex, I.M. (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell, 4, 901913.
  • Immink, R.G., Tonaco, I.A., De Folter, S., Shchennikova, A., Van Dijk, A.D., Busscher-Lange, J., Borst, J.W. and Angenent, G.C. (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10, R24.
  • Irish, V.F. (2008) The Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci. 13, 430436.
  • Irish, V.F. and Sussex, I.M. (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 2, 741753.
  • Ito, T., Wellmer, F., Yu, H., Das, P., Ito, N., Alves-Ferreira, M., Riechmann, J.L. and Meyerowitz, E.M. (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature, 430, 356360.
  • Ito, T., Ng, K.H., Lim, T.S., Yu, H. and Meyerowitz, E.M. (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell, 19, 35163529.
  • Jack, T. (2001) Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6, 310316.
  • Jack, T., Brockman, L.L. and Meyerowitz, E.M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683697.
  • Jack, T., Fox, G.L. and Meyerowitz, E.M. (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell, 76, 703716.
  • Jenik, P.D. and Irish, V.F. (2000) Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development, 127, 12671276.
  • Jofuku, K.D., Den Boer, B.G.W., Van Montague, M. and Okamuro, J.K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 6, 12111225.
  • Juenger, T., Perez-Perez, J.M., Bernal, S. and Micol, J.L. (2005) Quantitative trait loci mapping of floral and leaf morphology traits in Arabidopsis thaliana: evidence for modular genetic architecture. Evol. Dev. 7, 259271.
  • Kater, M.M., Franken, J., Van Aelst, A. and Angenent, G.C. (2000) Suppression of cell expansion by ectopic expression of the Arabidopsis SUPERMAN gene in transgenic petunia and tobacco. Plant J. 23, 407413.
  • Kaufmann, K., Muino, J.M., Jauregui, R., Airoldi, C.A., Smaczniak, C., Krajewski, P. and Angenent, G.C. (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 7, e1000090.
  • Kempin, S., Savidge, B. and Yanofsky, M.F. (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science, 267, 522525.
  • Klucher, K.M., Chow, H., Reiser, L. and Fischer, R.L. (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 8, 137153.
  • Krizek, B.A. (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs. Dev. Genet. 25, 224236.
  • Krizek, B. (2009) AINTEGUMENTA and AINTEGUMENTA-LIKE6 Act Redundantly to Regulate Arabidopsis Floral Growth and Patterning. Plant Physiol. 150, 19161929.
  • Krizek, B.A., Prost, V. and Macias, A. (2000) AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS. Plant Cell, 12, 13571366.
  • Krizek, B.A., Lewis, M.W. and Fletcher, J.C. (2006) RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J. 45, 369383.
  • Kuusk, S., Sohlberg, J.J., Long, J.A., Fridborg, I. and Sundberg, E. (2002) STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development. Development, 129, 47074717.
  • Kwiatkowska, D. (2006) Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry and growth. J. Exp. Bot. 57, 571580.
  • Lamb, R.S., Hill, T.A., Tan, Q.K. and Irish, V.F. (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development, 129, 20792086.
  • Laufs, P., Peaucelle, A., Morin, H. and Traas, J. (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131, 43114322.
  • Lee, I., Wolfe, D.S., Nilsson, O. and Weigel, D. (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr. Biol. 7, 95104.
  • Lee, J., Oh, M., Park, H. and Lee, I. (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J. 55, 832843.
  • Lenhard, M., Bohnert, A., Jürgens, G. and Laux, T. (2001) Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS. Cell, 105, 805814.
  • Li, S., Lauri, A., Ziemann, M., Busch, A., Bhave, M. and Zachgo, S. (2009) Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. Plant Cell, 21, 429441.
  • Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S. and Yanofsky, M.F. (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 11, 10071018.
  • Liljegren, S.J., Ditta, G.S., Eshed, Y., Savidge, B., Bowman, J.L. and Yanofsky, M.F. (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404, 766770.
  • Liljegren, S.J., Roeder, A.H., Kempin, S.A., Gremski, K., Ostergaard, L., Guimil, S., Reyes, D.K. and Yanofsky, M.F. (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell, 116, 843853.
  • Litt, A. (2007) An evaluation of A-function: evidence from the APETALA1 and APETALA2 gene lineages. Int. J. Plant Sci. 168, 7391.
  • Liu, C., Zhou, J., Bracha-Drori, K., Yalovsky, S., Ito, T. and Yu, H. (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development, 134, 19011910.
  • Liu, C., Xi, W., Shen, L., Tan, C. and Yu, H. (2009) Regulation of floral patterning by flowering time genes. Dev. Cell, 16, 711722.
  • Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R. and Weigel, D. (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell, 105, 793803.
  • Long, J.A. and Barton, M.K. (1998) The development of apical embryonic pattern in Arabidopsis. Development, 125, 30273035.
  • Ma, H. (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 56, 393434.
  • Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484495.
  • Ma, L., Sun, N., Liu, X., Jiao, Y., Zhao, H. and Deng, X.W. (2005) Organ-specific expression of Arabidopsis genome during development. Plant Physiol. 138, 8091.
  • Maier, A.T., Stehling-Sun, S., Wollmann, H., Demar, M., Hong, R.L., Haubeiss, S., Weigel, D. and Lohmann, J.U. (2009) Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development, 136, 16131620.
  • Maizel, A., Busch, M.A., Tanahashi, T., Perkovic, J., Kato, M., Hasebe, M. and Weigel, D. (2005) The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science, 308, 260263.
  • Mandel, M.A. and Yanofsky, M.F. (1995) A gene triggering flower formation in Arabidopsis. Nature, 377, 522524.
  • Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360, 273277.
  • Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T. (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95, 805815.
  • Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A. and Beeckman, T. (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat. Genet. 40, 14891492.
  • Melzer, R., Verelst, W. and Theissen, G. (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res. 37, 144157.
  • Mizukami, Y. and Fischer, R.L. (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl Acad. Sci. USA 97, 942947.
  • Molinero-Rosales, N., Jamilena, M., Zurita, S., Gomez, P., Capel, J. and Lozano, R. (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J. 20, 685693.
  • Nakayama, N., Arroyo, J.M., Simorowski, J., May, B., Martienssen, R. and Irish, V.F. (2005) Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. Plant Cell, 17, 24862506.
  • Nandi, A.K., Kushalappa, K., Prasad, K. and Vijayraghavan, U. (2000) A conserved function for Arabidopsis SUPERMAN in regulating floral-whorl cell proliferation in rice, a monocotyledonous plant. Curr. Biol. 10, 215218.
  • Nemhauser, J.L., Feldman, L.J. and Zambryski, P.C. (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development, 127, 38773888.
  • Ng, M. and Yanofsky, M.F. (2001) Activation of the Arabidopsis B class Homeotic Genes by APETALA1. Plant Cell, 13, 739753.
  • Nilsson, O., Lee, I., Blazquez, M.A. and Weigel, D. (1998) Flowering time genes modulate the response to LEAFY activity. Genetics, 150, 403410.
  • Noda, K., Glover, B.J., Linstead, P. and Martin, C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature, 369, 661664.
  • Ohno, C.K., Reddy, G.V., Heisler, M.G. and Meyerowitz, E.M. (2004) The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development, 131, 11111122.
  • Ostergaard, L. (2009) Don’t ‘leaf’ now. The making of a fruit. Curr. Opin. Plant Biol. 12, 3641.
  • Parcy, F., Nilsson, O., Busch, M.A., Lee, I. and Weigel, D. (1998) A genetic framework for floral patterning. Nature, 395, 561566.
  • Payne, T., Johnson, S.D. and Koltunow, A.M. (2004) KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development, 131, 37373749.
  • Peiffer, J.A., Kaushik, S., Sakai, H., Arteaga-Vazquez, M., Sanchez-Leon, N., Ghazal, H., Vielle-Calzada, J.P. and Meyers, B.C. (2008) A spatial dissection of the Arabidopsis floral transcriptome by MPSS. BMC Plant Biol. 8, 43.
  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200203.
  • Pelaz, S., Tapia-Lopez, R., Alvarez-Buylla, E.R. and Yanofsky, M.F. (2001) Conversion of leaves into petals in Arabidopsis. Curr. Biol. 11, 182184.
  • Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E. and Yanofsky, M.F. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424, 8588.
  • Prunet, N., Morel, P., Thierry, A.M., Eshed, Y., Bowman, J.L., Negrutiu, I. and Trehin, C. (2008) REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana. Plant Cell, 20, 901919.
  • Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L.D. and Coen, E. (2007) Evolution and development of inflorescence architectures. Science, 316, 14521456.
  • Rajani, S. and Sundaresan, V. (2001) The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr. Biol. 11, 19141922.
  • Rast, M.I. and Simon, R. (2008) The meristem-to-organ boundary: more than an extremity of anything. Curr. Opin. Genet. Dev. 18, 287294.
  • Ratcliffe, O.J., Amaya, I., Vincent, C.A., Rothstein, S., Carpenter, R., Coen, E.S. and Bradley, D.J. (1998) A common mechanism controls the life cycle and architecture of plants. Development, 125, 16091615.
  • Ratcliffe, O.J., Bradley, D.J. and Coen, E.S. (1999) Separation of shoot and floral identity in Arabidopsis. Development, 126, 11091120.
  • Reddy, G.V., Heisler, M.G., Ehrhardt, D.W. and Meyerowitz, E.M. (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development, 131, 42254237.
  • Riechmann, J.L., Wang, M. and Meyerowitz, E.M. (1996) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucl. Acids Res. 24, 31343141.
  • Roeder, A.H., Ferrandiz, C. and Yanofsky, M.F. (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 13, 16301635.
  • Rolland-Lagan, A.G., Bangham, J.A. and Coen, E. (2003) Growth dynamics underlying petal shape and asymmetry. Nature, 422, 161163.
  • Running, M.P. and Meyerowitz, E.M. (1996) Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development, 122, 12611269.
  • Sablowski, R. (2007) Flowering and determinacy in Arabidopsis. J. Exp. Bot. 58, 899907.
  • Sablowski, R.W.M. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93103.
  • Sakai, H., Medrano, L.J. and Meyerowitz, E.M. (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature, 378, 199201.
  • Sakai, H., Krizek, B.A., Jacobsen, S.E. and Meyerowitz, E.M. (2000) Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development. Plant Cell, 12, 16071618.
  • Samach, A., Klenz, J.E., Kohalmi, S.E., Risseeuw, E., Haughn, G.W. and Crosby, W.L. (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 20, 433445.
  • Sanders, P.M., Anhthu, Q.B., Weterings, K., McIntire, K.N., Hsu, Y.-C., Lee, P.Y., Truong, M.T., Beals, T.P. and Goldberg, R.B. (1999) Anther developmental defects in Arabidopsis male-steirle mutants. Sex. Plant Reprod. 11, 297322.
  • Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell, 7, 721733.
  • Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E. and Schneitz, K. (1999) Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 96, 1166411669.
  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jurgens, G. and Laux, T. (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100, 635644.
  • Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A. and Zambryski, P.C. (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development, 124, 44814491.
  • Sessions, A., Yanofsky, M.F. and Weigel, D. (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science, 289, 779781.
  • Shannon, S. and Meekswagner, D.R. (1993) Genetic interactions that regulate inflorescence development in arabidopsis. Plant Cell, 5, 639655.
  • Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L. and Meyerowitz, E.M. (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development, 134, 10511060.
  • Simon, R., Igeno, I.M. and Coupland, G. (1996) Activation of floral meristem identity genes in Arabidopsis. Nature, 384, 5962.
  • Simpson, G.G. and Dean, C. (2002) Arabidopsis, the Rosetta stone of flowering time? Science, 296, 285289.
  • Smyth, D.R., Bowman, J.L. and Meyerowitz, E.M. (1990) Early flower development in Arabidopsis. Plant Cell, 2, 755767.
  • Sohlberg, J.J., Myrenas, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G. and Sundberg, E. (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J. 47, 112123.
  • Sohn, E.J., Rojas-Pierce, M., Pan, S., Carter, C., Serrano-Mislata, A., Madueno, F., Rojo, E., Surpin, M. and Raikhel, N.V. (2007) The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc. Natl Acad. Sci. USA, 104, 1880118806.
  • Sorefan, K., Girin, T., Liljegren, S.J., Ljung, K., Robles, P., Galvan-Ampudia, C.S., Offringa, R., Friml, J., Yanofsky, M.F. and Ostergaard, L. (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature, 459, 583586.
  • Souer, E., Van Der Krol, A., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development, 125, 733742.
  • Sridhar, V.V., Surendrarao, A., Gonzalez, D., Conlan, R.S. and Liu, Z. (2004) Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development. Proc. Natl Acad. Sci. USA, 101, 1149411499.
  • Sridhar, V.V., Surendrarao, A. and Liu, Z. (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development, 133, 31593166.
  • Steeves, S.T. and Sussex, I.M. (1989) Patterns in plant development 2 edn. Cambridge: Cambridge University Press.
  • Sun, B., Xu, Y., Ng, K.H. and Ito, T. (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 23, 17911804.
  • Sundstrom, J.F., Nakayama, N., Glimelius, K. and Irish, V.F. (2006) Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J. 46, 593600.
  • Szecsi, J., Joly, C., Bordji, K., Varaud, E., Cock, J.M., Dumas, C. and Bendahmane, M. (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J. 25, 39123920.
  • Takada, S., Hibara, K., Ishida, T. and Tasaka, M. (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128, 11271135.
  • Takeda, S., Matsumoto, N. and Okada, K. (2004) RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development, 131, 425434.
  • Tanahashi, T., Sumikawa, N., Kato, M. and Hasebe, M. (2005) Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development, 132, 17271736.
  • Theissen, G. (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 7585.
  • Tilly, J., Allen, D.W. and Jack, T. (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development, 125, 16471657.
  • Trigueros, M., Navarrete-Gomez, M., Sato, S., Christensen, S.K., Pelaz, S., Weigel, D., Yanofsky, M.F. and Ferrandiz, C. (2009) The NGATHA Genes Direct Style Development in the Arabidopsis Gynoecium. Plant Cell, 21, 13941409.
  • Vroemen, C.W., Mordhorst, A.P., Albrecht, C., Kwaaitaal, M.A. and De Vries, S.C. (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 15, 15631577.
  • Wagner, D., Sablowski, R.W.M. and Meyerowitz, E.M. (1999) Transcriptional activation of APETALA1 by LEAFY. Science, 285, 582584.
  • Weigel, D. (1995) The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell, 7, 388389.
  • Weigel, D. and Meyerowitz, E.M. (1993) Activation of floral homeotic genes in Arabidopsis. Science, 261, 17231726.
  • Weigel, D. and Meyerowitz, E.M. (1994) The ABCs of floral homeotic genes. Cell, 78, 203209.
  • Weigel, D. and Nilsson, O. (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature, 377, 495500.
  • Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F. and Meyerowitz, E.M. (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell, 69, 843859.
  • Wellmer, F., Riechmann, J.L., Alves-Ferreira, M. and Meyerowitz, E.M. (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell, 16, 13141326.
  • Whitney, H.M., Chittka, L., Bruce, T.J. and Glover, B.J. (2009) Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Curr. Biol. 19, 948953.
  • Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309, 10561059.
  • Wijeratne, A.J., Zhang, W., Sun, Y., Liu, W., Albert, R., Zheng, Z., Oppenheimer, D.G., Zhao, D. and Ma, H. (2007) Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J. 52, 1429.
  • Wu, X., Dinneny, J.R., Crawford, K.M., Rhee, Y., Citovsky, V., Zambryski, P.C. and Weigel, D. (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development, 130, 37353745.
  • Xing, S. and Zachgo, S. (2008) ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J. 53, 790801.
  • Xing, S., Rosso, M.G. and Zachgo, S. (2005) ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development, 132, 15551565.
  • Xu, B., Li, Z., Zhu, Y., Wang, H., Ma, H., Dong, A. and Huang, H. (2008) Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development. Plant Physiol. 146, 566575.
  • Yang, W.C., Ye, D., Xu, J. and Sundaresan, V. (1999) The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 13, 21082117.
  • Yang, S.L., Xie, L.F., Mao, H.Z., Puah, C.S., Yang, W.C., Jiang, L., Sundaresan, V. and Ye, D. (2003) Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell, 15, 27922804.
  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346, 3539.
  • Yu, H., Ito, T., Wellmer, F. and Meyerowitz, E.M. (2004a) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat. Genet. 36, 157161.
  • Yu, H., Ito, T., Zhao, Y., Peng, J., Kumar, P. and Meyerowitz, E.M. (2004b) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc. Natl Acad. Sci. USA, 101, 78277832.
  • Yun, J.Y., Weigel, D. and Lee, I. (2002) Ectopic expression of SUPERMAN suppresses development of petals and stamens. Plant Cell Physiol. 43, 5257.
  • Zhang, W., Sun, Y., Timofejeva, L., Chen, C., Grossniklaus, U. and Ma, H. (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development, 133, 30853095.
  • Zhao, D.Z., Wang, G.F., Speal, B. and Ma, H. (2002) The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev. 16, 20212031.
  • Zhao, L., Kim, Y., Dinh, T.T. and Chen, X. (2007) miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J. 51, 840849.
  • Zik, M. and Irish, V.F. (2003a) Flower development: initiation, differentiation, and diversification. Annu. Rev. Cell Dev. Biol. 19, 119140.
  • Zik, M. and Irish, V.F. (2003b) Global Identification of Target Genes Regulated by APETALA3 and PISTILLATA Floral Homeotic Gene Action. Plant Cell, 15, 207222.
  • Zondlo, S.C. and Irish, V.F. (1999) CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. Plant J. 19, 259268.