SEARCH

SEARCH BY CITATION

References

  • Arai, M., Mitsuke, H., Ikeda, M., Xia, J.X., Kikuchi, T., Satake, M. and Shimizu, T. (2004) ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res. 32, W390W393.
  • Barcelo, J. and Poschenrieder, C. (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ. Exp. Bot. 48, 7592.
  • Borrero, J.C., Pandey, S., Ceballos, H., Magnavaca, R. and Bahia, A.F.C. (1995) Genetic variances for tolerance to soil acidity in a tropical maize population. Maydica, 40, 283288.
  • Bortiri, E., Jackson, D. and Hake, S. (2006) Advances in maize genomics: the emergence of positional cloning. Curr. Opin. Plant Biol. 9, 164171.
  • Brem, R.B., Yvert, G., Clinton, R. and Kruglyak, L. (2002) Genetic dissection of transcriptional regulation in budding yeast. Science, 296, 752755.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Collins, N.C., Shirley, N.J., Saeed, M., Pallotta, M. and Gustafson, J.P. (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics, 179, 669682.
  • Debeaujon, I., Peeters, A.J.M., Leon- Kloosterziel, K.M. and Koornneef, M. (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell, 13, 853871.
  • Durrett, T.P., Gassmann, W. and Rogers, E.E. (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144, 197205.
  • Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K. and Ma, J.F. (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 48, 10811091.
  • Goldin, A.L. (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol. 207, 266279.
  • Henikoff, S. and Henikoff, J.G. (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA, 89, 1091510919.
  • Hoekenga, O.A., Maron, L.G., Pineros, M.A. et al. (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl Acad. Sci. USA, 103, 97389743.
  • Huang, C.F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y. and Ma, J.F. (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell, 21, 655667.
  • Kao, C.H., Zeng, Z.B. and Teasdale, R.D. (1999) Multiple interval mapping for quantitative trait loci. Genetics, 152, 12031216.
  • Kidd, P.S., Llugany, M., Poschenrieder, C., Gunse, B. and Barcelo, J. (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52, 13391352.
  • Kochian, L.V., Hoekenga, O.A. and Piñeros, M.A. (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55, 459493.
  • Kosambi, D.D. (1944) The estimation of map distances from recombination values. Ann. Eugenet. 12, 172175.
  • Li, L.G., He, Z.Y., Pandey, G.K., Tsuchiya, T. and Luan, S. (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J. Biol. Chem. 277, 53605368.
  • Ligaba, A., Katsuhara, M., Ryan, P.R., Shibasaka, M. and Matsumoto, H. (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 142, 12941303.
  • Liu, J.P., Magalhaes, J.V., Shaff, J. and Kochian, L.V. (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J. 57, 389399.
  • Magalhaes, J.V., Garvin, D.F., Wang, Y.H., Sorrells, M.E., Klein, P.E., Schaffert, R.E., Li, L. and Kochian, L.V. (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics, 167, 19051914.
  • Magalhaes, J.V., Liu, J., Guimaraes, C.T. et al. (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 39, 11561161.
  • Magnavaca, R., Gardner, C. and Clark, R. (1987) Evaluation of inbred maize lines for aluminum tolerance in nutrient solution. In Genetic Aspects of Plant Mineral Nutrition (Gabelman, H.L.B., ed). Dordrecht, The Netherlands: Martinus Nijhoff, pp. 255265.
  • Maron, L.G., Kirst, M., Mao, C., Milner, M.J., Menossi, M. and Kochian, L.V. (2008) Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol. 179, 116128.
  • Morita, M., Shitan, N., Sawada, K., Van Montagu, M.C.E., Inzé, D., Rischer, H., Goossens, A., Oksman-Caldentey, K.M., Moriyama, Y. and Yazaki, K. (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl Acad. Sci. USA, 106, 24472452.
  • Moriyama, Y., Hiasa, M., Matsumoto, T. and Omote, H. (2008) Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica, 38, 11071118.
  • Ninamango- Cárdenas, F.E., Guimaraes, C.T., Martins, P.R., Parentoni, S.N., Carneiro, N.P., Lopes, M.A., Moro, J.R. and Paiva, E. (2003) Mapping QTLs for aluminum tolerance in maize. Euphytica, 130, 223232.
  • Omote, H., Hiasa, M., Matsumoto, T., Otsuka, M. and Moriyama, Y. (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol. Sci. 27, 587593.
  • Otani, M., Shitan, N., Sakai, K., Martinoia, E., Sato, F. and Yazaki, K. (2005) Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol. 138, 19391946.
  • Pandey, S., Ceballos, H., Magnavaca, R., Bahia, A.F.C., Duquevargas, J. and Vinasco, L.E. (1994) Genetics of tolerance to soil acidity in tropical maize. Crop Sci. 34, 15111514.
  • Parker, D., Norvell, W.A. and Chaney, R.L. (1995) GEOCHEM-PC: a chemical speciation program for IBM and compatible personal computers. In Chemical Equilibrium Reaction Models (Leoppert, R., Schwab, A. and Goldberg, S., eds). Madison, WI: Soil Science Society of America, pp. 253269.
  • Pellet, D.M., Grunes, D.L. and Kochian, L.V. (1995) Organic-acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L). Planta, 196, 788795.
  • Piñeros, M.A., Magalhaes, J.V., Carvalho Alves, V.M. and Kochian, L.V. (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129, 11941206.
  • Piñeros, M.A., Shaff, J.E., Manslank, H.S., Alves, V.M.C. and Kochian, L.V. (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol. 137, 231241.
  • Piñeros, M.A., Cancado, G.M.A. and Kochian, L.V. (2008) Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: functional and structural implications. Plant Physiol. 147, 21312146.
  • Raman, H., Zhang, K.R., Cakir, M. et al. (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome, 48, 781791.
  • Riede, C.R. and Anderson, J.A. (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci. 36, 905909.
  • Ryan, P.R., Liu, Q., Sperling, P., Dong, B., Franke, S. and Delhaize, E. (2007) A higher plant Δ8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol. 144, 19681977.
  • Ryan, P.R., Raman, H., Gupta, S., Horst, W.J. and Delhaize, E. (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 149, 340351.
  • Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E. and Matsumoto, H. (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37, 645653.
  • Sawaki, Y., Iuchi, S., Kobayashi, Y. et al. (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 150, 281294.
  • Sibov, S.T., Gaspar, M., Silva, M.J., Ottoboni, L.M.M., Arruda, P. and Souza, A.P. (1999) Two genes control aluminum tolerance in maize: genetic and molecular mapping analyses. Genome, 42, 475482.
  • Tzfira, T., Tian, G.W., Lacroix, B., Vyas, S., Li, J.X., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A. and Citovsky, V. (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503516.
  • Uhde-Stone, C., Zinn, K.E., Ramirez-Yanez, M., Li, A.G., Vance, C.P. and Allan, D.L. (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol. 131, 10641079.
  • West, M.A.L., Kim, K., Kliebenstein, D.J., Van Leeuwen, H., Michelmore, R.W., Doerge, R.W. and Clair, D.A.S. (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics, 175, 14411450.
  • Yokosho, K., Yamaji, N., Ueno, D., Mitani, N. and Ma, J.F. (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol. 149, 297305.
  • Yoo, S.D., Cho, Y.H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 15651572.