SEARCH

SEARCH BY CITATION

References

  • Abeles, F.B., Morgan, P.W. and Saltveit, M.E.J. (1992) Ethylene in Plant Biology. San Diego: Academic Press.
  • Argueso, C.T., Hansen, M. and Kieber, J.J. (2007) Regulation of ethylene biosynthesis. J. Plant Growth Regul. 26, 92105.
  • Barry, C.S., Llop-Tous, M.I. and Grierson, D. (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123, 979986.
  • Botella, J.R., Arteca, J.M., Somodevilla, M. and Arteca, R.N. (1996) Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol. Biol. 30, 11291137.
  • Boualem, A., Fergany, M., Fernandez, R. et al. (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science, 321, 836838.
  • Boualem, A., Troadec, C., Kovalski, I., Sari, M.A., Perl-Treves, R. and Bendahmane, A. (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two cucumis species. PLoS ONE, 4, e6144.
  • Chae, H.S. and Kieber, J.J. (2005) Eto brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 10, 291296.
  • Chae, H.S., Faure, F. and Kieber, J.J. (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell, 15, 545559.
  • Chang, A., Neumann, G.M. and Polya, G.M. (1995) Resolution of three Ca2+-dependent protein kinase and endogenous substrate proteins from bitter gourd seeds. Plant Sci. 105, 3144.
  • Chappell, J., Hahlbrock, K. and Boller, T. (1984) Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine-lyase. Planta, 161, 475480.
  • Chen, Y.F., Shakeel, S.N., Bowers, J., Zhao, X.C., Etheridge, N. and Schaller, G.E. (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J. Biol. Chem. 282, 2475224758.
  • Cheng, S.H., Willmann, M.R., Chen, H.C. and Sheen, J. (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol. 129, 469485.
  • Chico, J.M., Raices, M., Tellez-Inon, M.T. and Ulloa, R.M. (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol. 128, 256270.
  • Christians, M.J., Gingerich, D.J., Hansen, M., Binder, B.M., Kieber, J.J. and Vierstra, R.D. (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J. 57, 332345.
  • Collins, T., Stone, J.R. and Williams, A.J. (2001) All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol. 21, 36093615.
  • D’Andrea, L.D. and Regan, L. (2003) TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655662.
  • Felix, G., Grosskopf, D.G., Regenass, M., Basse, C.W. and Boller, T. (1991) Elicitor–induced ethylene biosynthesis in tomato cells. Characterization and use as a bioassay for elicitor action. Plant Physiol. 97, 1925.
  • Ge, L., Liu, J.Z., Wong, W.S., Hsiao, W.L.W., Chong, K., Xu, Z.K., Yang, S.F., Kung, S.D. and Li, N. (2000) Identification of a novel multiple environmental factor-responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco. Plant Cell Environ. 23, 11691182.
  • Guo, H.W. and Ecker, J.R. (2003) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell, 115, 667677.
  • Higgins, R., Lockwood, T., Holley, S., Yalamanchili, R. and Stratmann, J.W. (2007) Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato. Planta, 225, 15351546.
  • Joo, S., Liu, Y., Lueth, A. and Zhang, S.Q. (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54, 129140.
  • Katou, S., Yoshioka, H., Kawakita, K., Rowland, O., Jones, J.D.G., Mori, H. and Doke, N. (2005) Involvement of PPS3 phosphorylated by elicitor-responsive mitogen-activated protein kinases in the regulation of plant cell death. Plant Physiol. 139, 19141926.
  • Kende, H. (1993) Ethylene biosynthesis. Annu. Rev. Plant Biol. 44, 283307.
  • Kende, H. and Boller, T. (1981) Wound ethylene and 1-aminocyclopropane-1-carboxylate synthase in ripening tomato fruit. Planta, 151, 476481.
  • Kim, W.T. and Yang, S.F. (1992) Turnover of 1-aminocyclopropane-1-carboxylic acid synthase protein in wounded tomato fruit tissue. Plant Physiol. 100, 11261131.
  • Kinoshita, E., Kinoshita-Kikuta, E., Takiyama, K. and Koike, T. (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell Proteomics, 5, 749757.
  • Knight, H. and Knight, M.R. (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6, 262267.
  • Li, Z., Huang, S.W., Liu, S.Q. et al. (2009) Molecular isolation of the M Gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics, 182, 13811385.
  • Liu, Y.D. and Zhang, S.Q. (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell, 16, 33863399.
  • Lizada, M.C.C. and Yang, S.F. (1979) Simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal. Biochem. 100, 140145.
  • Llop-Tous, I., Barry, C.S. and Grierson, D. (2000) Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol. 123, 971978.
  • Lupas, A. (1996) Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375382.
  • Matsuo, R., Ochiai, W., Nakashima, K. and Taga, T. (2001) A new expression cloning strategy for isolation of substrate-specific kinases by using phosphorylation site-specific antibody. J. Immunol. Methods, 247, 141151.
  • Mayrose, M., Bonshtien, A. and Sessa, G. (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J. Biol. Chem. 279, 1481914827.
  • Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y. and Inaba, A. (1998) Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 118, 12951305.
  • Oetiker, J.H., Olson, D.C., Shiu, O.Y. and Yang, S.F. (1997) Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant Mol. Biol. 34, 275286.
  • Romeis, T., Ludwig, A.A., Martin, R. and Jones, J.D.G. (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J. 20, 55565567.
  • Rutschmann, F., Stalder, U., Piotrowski, M., Oecking, C. and Schaller, A. (2002) LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol. 129, 156168.
  • Sebastia, C.H., Hardin, S.C., Clouse, S.D., Kieber, J.J. and Huber, S.C. (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch. Biochem. Biophys. 428, 8191.
  • Spanu, P., Felix, G. and Boller, T. (1990) Inactivation of stress-induced 1-aminocyclopropane-1-carboxylate synthase in vivo differs from substrate-dependent inactivation in vitro. Plant Physiol. 93, 14821485.
  • Spanu, P., Grosskopf, D.G., Felix, G. and Boller, T. (1994) The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol. 106, 529535.
  • Tatsuki, M. and Mori, H. (1999) Rapid and transient expression of 1-aminocyclopropane-1-carboxylate synthase isogenes by touch and wound stimuli in tomato. Plant Cell Physiol. 40, 709715.
  • Tatsuki, M. and Mori, H. (2001) Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J. Biol. Chem. 276, 2805128057.
  • Tsuchisaka, A. and Theologis, A. (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 29823000.
  • Tuomainen, J., Betz, C., Kangasjarvi, J., Ernst, D., Yin, Z.H., Langebartels, C. and Sandermann, H. (1997) Ozone induction of ethylene emission in tomato plants: regulation by differential accumulation of transcripts for the biosynthetic enzymes. Plant J. 12, 11511162.
  • Van der Straeten, D., Rodrigues-Pousada, R.A., Villarroel, R., Hanley, S., Goodman, H.M. and Van Montagu, M. (1992) Cloning, genetic-mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl Acad. Sci. USA, 89, 99699973.
  • Vogel, J.P., Woeste, K.E., Theologis, A. and Kieber, J.J. (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl Acad. Sci. USA, 95, 47664771.
  • Wang, K.L.C., Yoshida, H., Lurin, C. and Ecker, J.R. (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature, 428, 945950.
  • Woeste, K.E., Ye, C. and Kieber, J.J. (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119, 521529.
  • Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Biol. 35, 155189.
  • Yoon, G.M., Cho, H.S., Ha, H.J., Liu, J.R. and Lee, H.S.P. (1999) Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39, 9911001.
  • Yoshida, H., Nagata, M., Saito, K., Wang, K.L.C. and Ecker, J.R. (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. 5, 13.
  • Yoshida, H., Wang, K.L.C., Chang, C.M., Mori, K., Uchida, E. and Ecker, J.R. (2006) The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Mol. Biol. 62, 427437.
  • Yoshii, H. and Imaseki, H. (1982) Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1-aminocyclopropane-1-carboxylate synthase by ethylene. Plant Cell Physiol. 23, 639649.
  • Zarembinski, T.I. and Theologis, A. (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26, 15791597.
  • Zhang, S.Q. and Klessig, D.F. (2001) MAPK cascades in plant defense signaling. Trends Plant Sci. 6, 520527.