SEARCH

SEARCH BY CITATION

References

  • Albrecht, M. and Takken, F.L.W. (2006) Update on the domain architectures of NLRs and R proteins. Biochem. Biophys. Res. Commun. 339, 459462.
  • Belkhadir, Y., Subramaniam, R. and Dangl, J.L. (2004) Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin. Plant Biol. 7, 391399.
  • Bella, J., Hindle, K.L., McEwan, P.A. and Lovell, S.C. (2008) The leucine-rich repeat structure. Cell. Mol. Life Sci. 65, 23072333.
  • Bhullar, N.K., Street, K., Mackay, M., Yahiaoui, N. and Keller, B. (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc. Natl Acad. Sci. USA, 106, 95199524.
  • Bhullar, N.K., Zhang, Z.Q., Wicker, T. and Keller, B. (2010) Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol. 10, 88.
  • Van Der Biezen, E.A. and Jones, J.D.G. (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 8, R226R227.
  • Briggle, L.W. (1969) Near-isogenic lines of wheat with genes for resistance to Erysiphe graminis f. sp. tritici. Crop Sci. 9, 7072.
  • Chisholm, S.T., Coaker, G., Day, B. and Staskawicz, B.J. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124, 803814.
  • Dangl, J.L. and Jones, J.D.G. (2001) Plant pathogens and integrated defence responses to infection. Nature, 411, 826833.
  • Danot, O., Marquenet, E., Vidal-Ingigliardi, D. and Richet, E. (2009) Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure, 17, 172182.
  • DeYoung, B.J. and Innes, R.W. (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7, 12431249.
  • Dodds, P.N. and Rathjen, J.P. (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539548.
  • Dodds, P.N., Lawrence, G.J. and Ellis, J.G. (2001) Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell, 13, 163178.
  • Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Ayliffe, M.A. and Ellis, J.G. (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell, 16, 755768.
  • Dodds, P.N., Lawrence, G.J., Catanzariti, A.M., Teh, T., Wang, C.I.A., Ayliffe, M.A., Kobe, B. and Ellis, J.G. (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl Acad. Sci. USA, 103, 88888893.
  • Douchkov, D., Nowara, D., Zierold, U. and Schweizer, P. (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol. Plant Microbe Interact. 18, 755761.
  • Dunning, F.M., Sun, W., Jansen, K.L., Helft, L. and Bent, A.F. (2007) Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell, 19, 32973313.
  • Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 17921797.
  • Ellis, J.G., Lawrence, G.J., Luck, J.E. and Dodds, P.N. (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell, 11, 495506.
  • Ellis, J., Dodds, P. and Pryor, T. (2000) The generation of plant disease resistance gene specificities. Trends Plant Sci. 5, 373379.
  • Ellis, J.G., Lawrence, G.J. and Dodds, P.N. (2007) Further analysis of gene-for-gene disease resistance specificity in flax. Mol. Plant Pathol. 8, 103109.
  • Enkhbayar, P., Kamiya, M., Osaki, M., Matsumoto, T. and Matsushima, N. (2004) Structural principles of leucine-rich repeat (LRR) proteins. Proteins, 54, 394403.
  • Farnham, G. and Baulcombe, D.C. (2006) Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc. Natl Acad. Sci. USA, 103, 1882818833.
  • Fiser, A. and Sali, A. (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics, 19, 25002501.
  • Flor, H.H. (1971) Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275296.
  • Gao, J.S., Sasaki, N., Kanegae, H., Konagaya, K.I., Takizawa, K., Hayashi, N., Okano, Y., Kasahara, M., Matsushita, Y. and Nyunoya, H. (2007) The TIR-NBS but not LRR domains of two novel N-like proteins are functionally competent to induce the elicitor p50-dependent hypersensitive response. Physiol. Mol. Plant Pathol. 71, 7887.
  • Herrin, B.R., Alder, M.N., Roux, K.H., Sina, C., Ehrhardt, G.R.A., Boydston, J.A., Turnbough, C.L. and Cooper, M.D. (2008) Structure and specificity of lamprey monoclonal antibodies. Proc. Natl Acad. Sci. USA, 105, 20402045.
  • Huang, X.Q. and Röder, M.S. (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica, 137, 203223.
  • Huang, X.Q., Hsam, S.L.K., Mohler, V., Röder, M.S. and Zeller, F.J. (2004) Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome, 47, 11301136.
  • Inohara, N. and Nunez, G. (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3, 371382.
  • Jones, J.D.G. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323329.
  • Jones, D.A. and Takemoto, D. (2004) Plant innate immunity – direct and indirect recognition of general and specific pathogen-associated molecules. Curr. Opin. Immunol. 16, 4862.
  • Kobe, B. and Kajava, A.V. (2001) The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725732.
  • Limpert, E., Felsenstein, F.G. and Andrivon, D. (1987) Analysis of virulence in populations of wheat powdery mildew in Europe. J. Phytopathol. 120, 18.
  • Luck, J.E., Lawrence, G.J., Dodds, P.N., Shepherd, K.W. and Ellis, J.G. (2000) Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell, 12, 13671377.
  • Lukasik, E. and Takken, F.L.W. (2009) STANDing strong, resistance proteins instigators of plant defence. Curr. Opin. Plant Biol. 12, 427436.
  • McDowell, J.M. and Simon, S.A. (2006) Recent insights into R gene evolution. Mol. Plant Pathol. 7, 437448.
  • Mondragon-Palomino, M., Meyers, B.C., Michelmore, R.W. and Gaut, B.S. (2002) Patterns of positive selection in the complete NBS-LRR gene familiy of Arabidopsis thaliana. Genome Res. 12, 13051315.
  • Van Ooijen, G., Mayr, G., Albrecht, M., Cornelissen, B.J.C. and Takken, F.L.W. (2008a) Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain. Mol. Plant, 1, 401410.
  • Van Ooijen, G., Mayr, G., Kasiem, M.M.A., Albrecht, M., Cornelissen, B.J.C. and Takken, F.L.W. (2008b) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J. Exp. Bot. 59, 13831397.
  • Parniske, M., Hammond-Kosack, K.E., Golstein, C., Thomas, C.M., Jones, D.A., Harrison, K., Wulff, B.B.H. and Jones, J.D.G. (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell, 91, 821832.
  • Rairdan, G.J. and Moffett, P. (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell, 18, 20822093.
  • Rairdan, G. and Moffett, P. (2007) Brothers in arms? Common and contrasting themes in pathogen perception by plant NB-LRR and animal NACHT-LRR proteins. Microbes Infect. 9, 677686.
  • Rehmany, A.P., Gordon, A., Rose, L.E., Allen, R.L., Armstrong, M.R., Whisson, S.C., Kamoun, S., Tyler, B.M., Birch, P.R.J. and Beynon, J.L. (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell, 17, 18391850.
  • Riedl, S.J., Li, W.Y., Chao, Y., Schwarzenbacher, R. and Shi, Y.G. (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature, 434, 926933.
  • Schweizer, P., Gees, R. and Mosinger, E. (1993) Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L.) with the powdery mildew Erysiphe graminis f.sp. hordei. Plant Physiol. 102, 503511.
  • Schweizer, P., Pokorny, J., Abderhalden, O. and Dudler, R. (1999) A transient assay system for the functional assessment of defense-related genes in wheat. Mol. Plant Microbe Interact. 12, 647654.
  • Schwessinger, B. and Zipfel, C. (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 11, 389395.
  • Seeholzer, S., Tsuchimatsu, T., Jordan, T., Bieri, S., Pajonk, S., Yang, W.X., Jahoor, A., Shimizu, K.K., Keller, B. and Schulze-Lefert, P. (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant Microbe Interact. 23, 497509.
  • Shen, Q.H., Zhou, F.S., Bieri, S., Haizel, T., Shirasu, K. and Schulze-Lefert, P. (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell, 15, 732744.
  • Smith, S.M. and Hulbert, S.H. (2005) Recombination events generating a novel Rp1 race specificity. Mol. Plant Microbe Interact. 18, 220228.
  • Srichumpa, P., Brunner, S., Keller, B. and Yahiaoui, N. (2005) Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. Plant Physiol. 139, 885895.
  • Takken, F.L.W., Albrecht, M. and Tameling, W.I.L. (2006) Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 9, 383390.
  • Tameling, W.I.L., Elzinga, S.D.J., Darmin, P.S., Vossen, J.H., Takken, F.L.W., Haring, M.A. and Cornelissen, B.J.C. (2002) The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell, 14, 29292939.
  • Tameling, W.I.L., Vossen, J.H., Albrecht, M., Lengauer, T., Berden, J.A., Haring, M.A., Cornelissen, B.J.C. and Takken, F.L.W. (2006) Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140, 12331245.
  • Tanabe, T., Chamaillard, M., Ogura, Y. et al. (2004) Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J. 23, 15871597.
  • Ueda, H., Yamaguchi, Y. and Sano, H. (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol. Biol. 61, 3145.
  • Velikovsky, C.A., Deng, L., Tasumi, S., Iyer, L.M., Kerzic, M.C., Aravind, L., Pancer, Z. and Mariuzza, R.A. (2009) Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. Nat. Struct. Mol. Biol. 16, 725730.
  • Wang, C.I.A., Guncar, G., Forwood, J.K. et al. (2007) Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell, 19, 28982912.
  • Wei, T., Gong, J., Jamitzky, F., Heckl, W.M., Stark, R.W. and Rössle, S.C. (2008) LRRML: a conformational database and an XML description of leucine-rich repeats (LRRs). BMC Struct. Biol. 8, 47.
  • Winzeler, M., Streckeisen, P. and Fried, P.M. (1991) Virulence analysis of the wheat powdery mildew population in Switzerland between 1980 and 1989. In Integrated Control Of Cereal Mildews: Virulence Patterns And Their Change (Jørgensen, J.H. ed.). Røskilde, Denmark: Risø National Laboratory, pp. 1521.
  • Wulff, B.B.H., Thomas, C.M., Smoker, M., Grant, M. and Jones, J.D.G. (2001) Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell, 13, 255272.
  • Wulff, B.B.H., Heese, A., Tomlinson-Buhot, L., Jones, D.A., De La Pena, M. and Jones, J.D.G. (2009) The major specificity-determining amino acids of the tomato Cf-9 disease resistance protein are at hypervariable solvent-exposed positions in the central leucine-rich repeats. Mol. Plant Microbe Interact. 22, 12031213.
  • Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37, 528538.
  • Yahiaoui, N., Brunner, S. and Keller, B. (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J. 47, 8598.
  • Yahiaoui, N., Kaur, N. and Keller, B. (2009) Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J. 57, 846856.
  • Zhou, B., Qu, S.H., Liu, G.F., Dolan, M., Sakai, H., Lu, G.D., Bellizzi, M. and Wang, G.L. (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant Microbe Interact. 19, 12161228.