SEARCH

SEARCH BY CITATION

References

  • Adam, H., Jouannic, S., Orieux, Y., Morcillo, F., Richaud, F., Duval, Y. and Tregear, J.W. (2007) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J. Exp. Bot. 58, 12451259.
  • Albert, V.A., Soltis, D.E., Carlson, J.E. et al. (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol. 5, 5.
  • Altman, N.S. and Hua, J. (2006) Extending the loop design for two-channel microarray experiments. Genet. Res. 88, 153163.
  • Altman, N.S., Leebens-Mack, J., Zahn, L., Chanderbali, A.S., Tian, D., Werner, L., Ma, H. and DePamphilis, C. (2006) Behind the scenes: planning a multi-species microarray experiment. Chance, 19, 2738.
  • Alves-Ferreira, M., Wellmer, F., Banhara, A., Kumar, V., Riechmann, J.L. and Meyerowitz, E.M. (2007) Global expression profiling applied to the analysis of Arabidopsis stamen development. Plant Physiol. 145, 747762.
  • Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell, 5, 569579.
  • Angenent, G.C., Franken, J., Busscher, M., Colombo, L. and Van Tunen, A.J. (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 4, 101112.
  • Baum, D.A. and Hileman, L.C. (2006) A developmental genetic model for the origin of the flower. In Flowering and Its Manipulation (Ainsworth, C., ed.). Sheffield: Blackwell Publishing, pp. 327.
  • Borsch, T., Hilu, K.W., Wiersema, J.H., Löhne, C., Barthlott, W. and Wilde, V. (2007) Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes in the chloroplast trnT-trnF region. Int. J. Plant Sci. 168, 639671.
  • Borsch, T., Löhne, C. and Wiersema, J.H. (2008) Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon, 57, 10521081.
  • Buzgo, M., Soltis, P.S. and Soltis, D.E. (2004) Floral developmental morphology of Amborella trichopoda (Amborellaceae). Int. J. Plant Sci. 165, 925947.
  • Buzgo, M., Soltis, P.S., Kim, S. and Soltis, D.E. (2005) The making of the flower. Biologists, 52, 149154.
  • Chanderbali, A.S., Kim, S., Buzgo, M., Zheng, Z., Oppenheimer, D.G., Soltis, D.E. and Soltis, P.S. (2006) Genetic footprints of stamen ancestors guide perianth evolution in Persea (Lauraceae). Int. J. Plant Sci. 167, 10751089.
  • Chanderbali, A.S., Albert, V.A., Leebens-Mack, J., Altman, N.S., Soltis, D.E. and Soltis, P.S. (2009) Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae). Proc. Natl. Acad. Sci. USA, 106, 89298934.
  • Chen, C., Wang, S. and Huang, H. (2000) LEUNIG has multiple functions in gynoecium development in Arabidopsis. Genesis, 26, 4254.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature, 353, 3137.
  • Conner, J. and Liu, Z. (2000) LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc. Natl. Acad. Sci. USA, 97, 1290212907.
  • Davies, B., Cartolano, M. and Schwarz-Sommer, Z. (2006) Flower development: the Antirrhinum perspective. Adv. Bot. Res. 44, 280321.
  • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 19351940.
  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95, 1486314868.
  • Endress, P.K. (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int. J. Plant Sci. 162, 11111140.
  • Fan, J., Li, W., Dong, X., Guo, W. and Shu, H. (2007) Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis. Sci. China, C, Life Sci. 50, 676689.
  • Fornara, F., Parenicová, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L. and Kater, M.M. (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol. 135, 22072219.
  • Frohlich, M.W. and Parker, D.S. (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25, 155170.
  • Gomez-Mena, C., De Folter, S., Costa, M.M., Angenent, G.C. and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 132, 429438.
  • Guo, Y. and Gan, S. (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46, 601612.
  • Hardenack, S., Ye, D., Saedler, H. and Grant, S. (1994) Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell, 6, 17751787.
  • Hase, Y., Trung, K.H., Matsunaga, T. and Tanaka, A. (2006) A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. Plant J. 46, 317326.
  • Hennig, L., Gruissem, W., Grossniklaus, U. and Kohler, C. (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol. 135, 17651775.
  • Hiepko, P. (1965) Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen uber das Perianth bei den Polycarpicae. Bot. Jahrb. Syst. 84, 359508.
  • Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525529.
  • De Hoon, M.J., Imoto, S. and Miyano, S. (2002) Statistical analysis of a small set of time-ordered gene expression data using linear splines. Bioinformatics, 18, 14771485.
  • Hsu, H.F., Huang, C.H., Chou, L.T. and Yang, C.H. (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44, 783794.
  • Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106111.
  • Jansen, R.K., Cai, Z., Raubeson, L.A. et al. (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA, 104, 1936919374.
  • Kang, H.G., Noh, Y.S., Chung, Y.Y., Costa, M.A., An, K. and An, G. (1995) Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol. Biol. 29, 110.
  • Kang, H.G., Jeon, J.S., Lee, S. and An, G. (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38, 10211029.
  • Kerstetter, R.A., Bollman, K., Taylor, R.A., Bomblies, K. and Poethig, R.S. (2001) KANADI regulates organ polarity in Arabidopsis. Nature, 411, 706709.
  • Kim, G.T., Tsukaya, H. and Uchimiya, H. (1998) The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana. Planta, 206, 175183.
  • Kim, G.T., Shoda, K., Tsuge, T., Cho, K.H., Uchimiya, H., Yokoyama, R., Nishitani, K. and Tsukaya, H. (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J. 21, 12671279.
  • Kim, S., Koh, J., Yoo, M.J., Kong, H., Hu, Y., Ma, H., Soltis, P.S. and Soltis, D.E. (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J. 43, 724744.
  • Kramer, E.M. and Hall, J.C. (2005) Evolutionary dynamics of genes controlling floral development. Curr. Opin. Plant Biol. 8, 1318.
  • Leebens-Mack, J., Raubeson, L.A., Cui, L., Kuehl, J.V., Fourcade, M.H., Chumley, T.W., Boore, J.L., Jansen, R.K. and Depamphilis, C.W. (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol. Biol. Evol. 22, 19481963.
  • Les, D.H., Schneider, E.L., Padgett, D.J., Soltis, P.S., Soltis, D.E. and Zanis, M. (1999) Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): a synthesis of non-molecular, rbcL, matK, and 18S rDNA data. Syst. Bot. 24, 2846.
  • Li, Y., Sorefan, K., Hemmann, G. and Bevan, M.W. (2004) Arabidopsis NAP and PIR regulate actin-based cell morphogenesis and multiple developmental processes. Plant Physiol. 136, 36163627.
  • Löhne, C., Borsch, T. and Wiersema, J.H. (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Bot. J. Linn. Soc. 154, 141163.
  • Lü, S., Du, X., Lu, W., Chong, K. and Meng, Z. (2007) Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. Evol. Dev. 9, 92104.
  • Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484495.
  • Moore, M.J., Bell, C.D., Soltis, P.S. and Soltis, D.E. (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. USA, 104, 1936319368.
  • Mouradov, A., Glassick, T.V., Hamdorf, B.A., Murphy, L.C., Marla, S.S., Yang, Y. and Teasdale, R.D. (1998) Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiol. 117, 5562.
  • Nijhawan, A., Jain, M., Tyagi, A.K. and Khurana, J.P. (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. 146, 333350.
  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200203.
  • Poupin, M.J., Federici, F., Medina, C., Matus, J.T., Timmermann, T. and Arce-Johnson, P. (2007) Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene, 404, 1024.
  • Qiu, Y.L., Dombrovska, O., Lee, J. et al. (2005) Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes. Int. J. Plant Sci. 166, 815842.
  • Reinheimer, R. and Kellogg, E.A. (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression Is ancient and palea expression is new. Plant Cell, 21, 25912605.
  • Rijpkema, A.S., Zethof, J., Gerats, T. and Vandenbussche, M. (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J. 60, 19.
  • Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell, 7, 12591269.
  • Saarela, J.M., Rai, H.S., Doyle, J.A., Endress, P.K., Mathews, S., Marchant, A.D., Briggs, B.G. and Graham, S.W. (2007) Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature, 446, 312315.
  • Sablowski, R.W. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93103.
  • Saldanha, A.J. (2004) Java Treeview--extensible visualization of microarray data. Bioinformatics, 20, 32463248.
  • Schauer, S.E., Schluter, P.M., Baskar, R., Gheyselinck, J., Bolanos, A., Curtis, M.D. and Grossniklaus, U. (2009) Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. Plant J. 59, 9871000.
  • Schmid, M., Uhlenhaut, N.H., Godard, F., Demar, M., Bressan, R., Weigel, D. and Lohmann, J.U. (2003) Dissection of floral induction pathways using global expression analysis. Development, 130, 60016012.
  • Schmid, M., Davison, T.S., Henz, S.R., Pape, U.J., Demar, M., Vingron, M., Scholkopf, B., Weigel, D. and Lohmann, J.U. (2005) A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37, 501506.
  • Shan, H., Su, K., Lu, W., Kong, H., Chen, Z. and Meng, Z. (2006) Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae). Dev. Genes. Evol. 216, 785795.
  • Shindo, S., Ito, M., Ueda, K., Kato, M. and Hasebe, M. (1999) Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol. Dev. 1, 180190.
  • Smyth, G.K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3.
  • Smyth, G.K. (2005) Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor (Gentleman, R., Carey, V., Dudoit, S., Irizarry, R. and Huber, W., eds). New York: Springer, pp. 397420.
  • Smyth, G.K., Michaud, J. and Scott, H.S. (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics, 21, 20672075.
  • Soltis, P.S., Soltis, D.E. and Chase, M.W. (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 402, 402404.
  • Soltis, D.E., Soltis, P.S., Chase, M.W. et al. (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133, 381461.
  • Soltis, D.E., Ma, H., Frohlich, M.W., Soltis, P.S., Albert, V.A., Oppenheimer, D.G., Altman, N.S., DePamphilis, C. and Leebens-Mack, J. (2007) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci. 12, 358367.
  • Takhtajan, A. (1991) Evolutionary Trends in Flowering Plants. New York, NY, USA: Columbia University Press.
  • Taylor, S.A., Hofer, J.M., Murfet, I.C., Sollinger, J.D., Singer, S.R., Knox, M.R. and Ellis, T.H. (2002) PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiol. 129, 11501159.
  • Theissen, G. and Melzer, R. (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. 100, 603619.
  • Theissen, G. and Saedler, H. (2001) Plant biology. Floral quartets. Nature, 409, 469471.
  • Warner, K.A., Rudall, P.J. and Frohlich, M.W. (2008) Differentiation of perianth organs in Nymphaeales. Taxon, 57, 10961109.
  • Warner, K.A., Rudall, P.J. and Frohlich, M.W. (2009) Environmental control of sepalness and petalness in perianth organs of waterlilies: a new Mosaic theory for the evolutionary origin of a differentiated perianth. J. Exp. Bot. 60, 35593574.
  • Wellmer, F. and Riechmann, J.L. (2005) Gene network analysis in plant development by genomic technologies. Int. J. Dev. Biol. 49, 745759.
  • Wellmer, F., Riechmann, J.L., Alves-Ferreira, M. and Meyerowitz, E.M. (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell, 16, 13141326.
  • Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J.L. and Meyerowitz, E.M. (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet. 2, e117.
  • Winter, K.U., Becker, A., Munster, T., Kim, J.T., Saedler, H. and Theissen, G. (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA, 96, 73427347.
  • Yamaguchi, T., Lee, D.Y., Miyao, A., Hirochika, H., An, G. and Hirano, H.Y. (2006) Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell, 18, 1528.
  • Yoo, M.J., Soltis, P.S. and Soltis, D.E. (2010) Expression of floral MADS-box genes in two divergent “water lilies”: Nymphaeales and Nelumbo. Int. J. Plant Sci. 171, 121146.
  • Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A. and Teeri, T.H. (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17, 5162.
  • Zahn, L.M., Kong, H., Leebens-Mack, J.H., Kim, S., Soltis, P.S., Landherr, L.L., Soltis, D.E., Depamphilis, C.W. and Ma, H. (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 169, 22092223.
  • Zhang, X., Feng, B., Zhang, Q., Zhang, D., Altman, N. and Ma, H. (2005) Genome-wide expression profiling and identification of gene activities during early flower development in Arabidopsis. Plant Mol. Biol. 58, 401419.