SEARCH

SEARCH BY CITATION

References

  • Assunção, A.G.L., Da CostaMartins, P., De Folter, S., Vooijs, R., Schat, H. and Aarts, M.G.M. (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24, 217226.
  • Axelsen, K.B. and Palmgren, M.G. (1998) Evolution of substrate specificities in the P-Type ATPase superfamily. J. Mol. Evol. 46, 84101.
  • Baxter, I., Tchieu, J., Sussman, M.R., Boutry, M., Palmgren, M.G., Gribskov, M., Harper, J.F. and Axelsen, K.B. (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol. 132, 618628.
  • Becher, M., Talke, I.N., Krall, L. and Krämer, U. (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J. 37, 251268.
  • Bernard, C., Roosens, N., Czernic, P., Lebrun, M. and Verbruggen, N. (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett. 569, 140148.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735743.
  • Cosio, C., Martinoia, E. and Keller, C. (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134, 716725.
  • Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P. and Verbruggen, N. (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol. 144, 10521065.
  • Dahmani-Muller, H., van Oort, F., Gelie, B. and Balabane, M. (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut. 109, 231238.
  • Deniau, A.X., Pieper, B., Ten Bookum, W.M., Lindhout, P., Aarts, M.G.M. and Schat, H. (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor. Appl. Genet. 113, 907920.
  • Dräger, D.B., Desbrosses-Fonrouge, A.-G., Krach, C., Chardonnens, A.N., Meyer, R.C., Saumitou-Laprade, P. and Krämer, U. (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J. 39, 425439.
  • Ebbs, S.D., Zambrano, M.C., Spiller, S.M. and Newville, M. (2009) Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 181, 626636.
  • Filatov, V., Dowdle, J., Smirnoff, N., Ford-Lloyd, B., Newbury, H.J. and MacNair, M.R. (2006) Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Mol. Ecol. 15, 30453059.
  • Fuse, T., Sasaki, T. and Yano, M. (2001) Ti-plasmid vectors useful for functional analysis of rice genes. Plant Biotechnol. 18, 219222.
  • Gietz, R.D. and Schiestl, R.H. (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 3134.
  • Gravot, A., Lieutaud, A., Verret, F., Auroy, P., Vavasseur, A. and Richaud, P. (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd Pb transporter in yeast. FEBS Lett. 561, 2228.
  • de Guimarães, M.A., Gustin, J.L. and Salt, D.E. (2009) Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. New Phytol. 184, 323329.
  • Hammond, J.P., Bowen, H.C., White, P.J., Mills, V., Pyke, K.A., Baker, A.J.M., Whiting, S.N., May, S.T. and Broadley, M.R. (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol. 170, 239260.
  • Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D. and Krämer, U. (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453, 391395.
  • Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T. and Benfey, P.N. (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 101, 555567.
  • Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F. and Cobbett, C.S. (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16, 13271339.
  • Kim, Y.Y., Choi, H., Segami, S., Cho, H.T., Martinoia, E., Maeshima, M. and Lee, Y. (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J. 58, 737753.
  • Krämer, U. (2005) MTP1 mops up excess zinc in Arabidopsis cells. Trends Plant Sci. 10, 313315.
  • Küpper, H., Zhao, F.J. and McGrath, S.P. (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 119, 305311.
  • Küpper, H., Lombi, E., Zhao, F.J. and McGrath, S.P. (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212, 7584.
  • Küpper, H., Mijovilovich, A., Meyer-Klaucke, W. and Kroneck, P.M.H. (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol. 134, 748757.
  • Lasat, M.M., Baker, A.J. and Kochian, L.V. (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol. 118, 875883.
  • Lombi, E., Zhao, F.J., Dunham, S.J. and McGrath, S.P. (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol. 145, 1120.
  • Lombi, E., Zhao, F.J., McGrath, S.P., Young, S.D. and Sacchi, G.A. (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol. 149, 5360.
  • Lombi, E., Tearall, K.L., Howarth, J.R., Zhao, F.-J., Hawkesford, M.J. and McGrath, S.P. (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 128, 13591367.
  • Ma, J.F., Ueno, D., Zhao, F.J. and McGrath, S.P. (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta, 220, 731736.
  • McGrath, S.P., Sidoli, C.M.D., Baker, A.J.M. and Reeves, R.D. (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In Integrated Soil and Sediment Research: A Basis for Proper Protection (Eijsackers, H.J.P. and Hamers, T., eds). Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 673677.
  • Milner, M.J. and Kochian, L.V. (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann. Bot. 102, 313.
  • Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A. and Richaud, P. (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol. 149, 894904.
  • Moreno, I., Norambuena, L., Maturana, D., Toro, M., Vergara, C., Orellana, A., Zurita-Silva, A. and Ordenes, V.R. (2008) AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. J. Biol. Chem. 283, 96339641.
  • Papoyan, A. and Kochian, L.V. (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol. 136, 38143823.
  • Peer, W.A., Mamoudian, M., Lahner, B., Reeves, R.D., Murphy, A.S. and Salt, D.E. (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol. 159, 421430.
  • Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D. and Kochian, L.V. (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl Acad. Sci. USA, 97, 49564960.
  • Plaza, S., Tearall, K.L., Zhao, F.-J., Buchner, P., McGrath, S.P. and Hawkesford, M.J. (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 58, 17171728.
  • Sheen, J. (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 14661475.
  • Shimaoka, T., Ohnishi, M., Sazuka, T., Mitsuhashi, N., Hara-Nishimura, I., Shimazaki, K., Maeshima, M., Yokota, A., Tomizawa, K. and Mimura, T. (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol. 45, 672683.
  • Sugiyama, A., Shitan, N. and Yazaki, K. (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol. 144, 20002008.
  • Talke, I.N., Hanikenne, M. and Krämer, U. (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol. 142, 148167.
  • Ueno, D., Ma, J.F., Iwashita, T., Zhao, F.-J. and McGrath, S.P. (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta, 221, 928936.
  • Ueno, D., Yamaji, N., Kono, I., Huang, C.F., Ando, T., Yano, M. and Ma, J.F. (2010) Gene limiting cadmium accumulation in rice. Proc. Natl Acad. Sci. USA, 107, 1650016505.
  • Van De Mortel, J.E., Schat, H., Moerland, P.D., Van Themaat, E.V.L., Van Der Ent, S., Blankestijn, H., Ghandilyan, A., Tsiatsiani, S. and Aarts, M.G.M. (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 31, 301324.
  • Verbruggen, N., Hermans, C. and Schat, H. (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 12, 364372.
  • Vogel-Mikuš, K., Drobne, D. and Regvar, M. (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ. Pollut. 133, 233242.
  • Willems, G., Dräger, D.B., Courbot, M., Godé, C., . Verbruggen, N. and Saumitou-Laprade, P. (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics, 176, 659674.
  • Williams, L.E. and Mills, R.F. (2005) P1B-ATPases – an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci. 10, 491502.
  • Wong, C.K.E. and Cobbett, C.S. (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol. 181, 7178.
  • Yamaji, N. and Ma, J.F. (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol. 143, 13061313.
  • Yang, X.E., Long, X.X., Ni, W.Z. and Fu, C.X. (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin. Sci. Bull. 47, 16341637.
  • Zhao, F.J. and McGrath, S.P. (2009) Biofortification and phytoremediation. Curr. Opin. Plant Biol. 12, 373380.
  • Zhao, F.J., Hamon, R.E., Lombi, E., McLaughlin, M.J. and McGrath, S.P. (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 53, 535543.