SEARCH

SEARCH BY CITATION

References

  • Arditti, J. (2002) Resupination. In Proceedings of the 17th World Orchid Conference, Shah Alam, Malaysia, publ. 2005 (Arditti, J. and Nair, H., eds). Borneo: Natural History Publications, pp. 111121.
  • Bartlett, M.E. and Specht, C.D. (2010) Evidence for the involvement of Globosa-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. New Phytol. 187, 521541.
  • Bateman, R.M. (1985) Peloria and pseudopeloria in British orchids. Watsonia, 15, 357359.
  • Bateman, R.M. and Rudall, P.J. (2006) The good, the bad and the ugly: using naturally occurring terata to distinguish the possible from the impossible in orchid floral evolution. In Monocots, Comparative Biology and Evolution. Excluding Poales (Columbus, J.T., Friar, E.A., Porter, J.M., Prince, L.M. and Simpson, M.G., eds). Claremont: Rancho Santa Ana Botanical Garden. I, pp. 481496.
  • Becker, A. and Theißen, G. (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464489.
  • Brown, R. (1810) Orchidaceae. In Prodromus Florae Nova Hollandiae et Insulae van-Diemen exhibens characteres Plantarum quas annis 1802–1805 per oras utriusque insulae cellegit et descripsit. Volume 1. London: Richard Taylor, pp. 309333.
  • Brown, R. (1831) On the organs and mode of the fecundation of Orchideae and Asclepiadeae. Trans. Linn. Soc. 16, 685745.
  • Cameron, K.M. (2006) A comparison and combination of plastid atpB and rbcL gene sequences for inferring phylogenetic relationships within Orchidaceae. In Monocots: Comparative Biology and Evolution. Excluding Poales (Columbus, J.T., Friar, E.A., Porter, J.M., Prince, L.M. and Simpson, M.G., eds). Claremont: Rancho Santa Ana Botanical Garden, pp. 447464.
  • Chang, Y.Y., Kao, N.H., Li, J.Y., Hsu, W.H., Liang, Y.L., Wu, J.W. and Yang, C.H. (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol. 152, 837853.
  • Chase, M., Cameron, K.M., Barret, R.L. and Freudenstein, J.V. (2003) DNA data and orchidaceae systematics: a new phylogenetic classification. In Orchid Conservation (Dixon, K.W., Kell, S.P., Barrett, R.L. and Cribb, P.J., eds). Kota Kinabalu, Sabah: Natural History Publications, pp. 6989.
  • Chase, M.W., Fay, M.F., Devey, D.S. et al. (2006) Multigene analyses of monocot relationships: a summary. In Monocots: Comparative Biology and Evolution. Excluding Poales (Columbus, J.T., Friar, E.A., Porter, J.M., Prince, L.M. and Simpson, M.G., eds). Claremont: Rancho Santa Ana Botanical Garden, pp. 6375.
  • Chen, S.C. (1982) The origin and early differentiation of the Orchidaceae. Acta Phytotax. Sin. 20, 222.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature, 353, 3137.
  • Cozzolino, S. and Widmer, A. (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol. Evol. 20, 487492.
  • Crüger, H. (1864) A few notes on the fecundation of orchids and their morphology. J. Proc. Linn. Soc. (Bot.) 8, 127135.
  • Darwin, C.R. (1862) On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the Good Effects of Intercrossing. London: John Murray.
  • Derveaux, S., Vandesompele, J. and Hellemans, J. (2010) How to do successful gene expression analysis using real-time PCR. Methods, 50, 227230.
  • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 19351940.
  • Dressler, R.L. (1993) Phylogeny and Classification of the Orchid Family. Portland, Oregon: Discorides Press.
  • Ferrario, S., Immink, R.G. and Angenent, G.C. (2004) Conservation and diversity in flower land. Curr. Opin. Plant Biol. 7, 8491.
  • Garay, L.A. (1960) On the origin of the Orchidaceae. Bot. Mus. Leafl. Harvard Univ. 19, 5796.
  • Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 15481560.
  • Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19.
  • Hsu, H.F. and Yang, C.H. (2002) An Orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43, 11981209.
  • Jack, T., Brockman, L.L. and Meyerowitz, E. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683697.
  • Jack, T., Fox, G.L. and Meyerowitz, E. (1994) Arabidopsis homeotic gene APETALA3 ectopic expression, Transcriptional and posttranscriptional regulation determine floral organ identity. Cell, 76, 703716.
  • Kanno, A., Saeki, H., Kameya, T., Saedler, H. and Theißen, G. (2003) Heterotopic expression of class B floral homeotic gene supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52, 831841.
  • Kanno, A., Nakada, M., Akita, Y. and Hirai, M. (2007) Class B gene expression and the modified ABC model in nongrass monocots. Sci. World J. 7, 268279.
  • Kim, S., Yoo, M.-J., Albert, V.A., Farris, J.S., Soltis, P.S. and Soltis, D.E. (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms, evolutionary and functional implications of a 260-million-year-old duplication. Am. J. Bot. 91, 21022118.
  • Kim, S.-Y., Yun, P.-Y., Fukuda, T., Ochiai, T., Yokoyama, J., Kameya, T. and Kanno, A. (2007) Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci. 172, 319326.
  • Kramer, E.M., Dorit, R.L. and Irish, V.F. (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 149, 765783.
  • Krizek, B.A. and Fletcher, J.C. (2005) Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 6, 688698.
  • Krizek, B.A. and Meyerowitz, E.M. (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 122, 1122.
  • Kurzweil, H. (1987) Developmental studies in orchid flowers I: Epidendroid and vandoid species. Nord. J. Bot. 7, 427442.
  • Kurzweil, H. (1998) Floral ontogeny of orchids, a review. Beitr. Biol. Pflanzen 71, 45100.
  • Lindley, J. (1840) The Genera and Species of Orchidaceous Plants. London: Ridgeway.
  • Litt, A. and Kramer, E. (2010) The ABC model and the diversification of floral organ identity. Semin. Cell Dev. Biol. 21, 129137.
  • Mondragón-Palomino, M. and Theißen, G. (2007) MADS-Box genes involved in orchid floral development: a primer. Proc. 9th Asia-Pac. Orch. Conference . Seoul. 374386.
  • Mondragón-Palomino, M. and Theißen, G. (2008) MADS about the evolution of orchid flowers. Trends Plant Sci. 13, 5159.
  • Mondragón-Palomino, M. and Theißen, G. (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. 104, 583594.
  • Mondragón-Palomino, M., Hiese, L., Härter, A., Koch, M.A. and Theissen, G. (2009) Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evol. Biol. 9, 81.
  • Nakada, M., Komatsu, M., Ochiai, T., Ohtsu, K.M., Nakazono, M., Nishizawa, N.K., Ko, N.R., Nishiyama, T., Kameya, T and Kanno, A. (2006) Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection. Plant Sci. 170, 143150.
  • Nakamura, T., Fukuda, T., Nakano, M., Hasebe, M., Kameya, T. and Kanno, A. (2005) The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol.Biol. 58, 435445.
  • Nelson, E. (1967) Das Orchideenlabellum ein Homologon des einfachen medianen Petalums der Apostasiaceen oder ein zusammengesetztes Organ? Bot. Jb. 87, 2235.
  • Ramírez, S.R., Gravendeel, B., Singer, R.B., Marshall, C.R. and Pierce, N.R. (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature, 448, 10421045.
  • Rijpkema, A.S., Vandenbussche, M., Koes, R., Heijmans, K. and Gerats, T. (2010) Variations on a theme: changes in the floral ABCs in angiosperms. Semin. Cell Dev. Biol. 21, 100107.
  • Rolfe, R.A. (1909) The evolution of the Orchidaceae. Orch. Rev. 17, 129132.
  • Rudall, P.J. and Bateman, R.M. (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol. Rev. 77, 403441.
  • Rudall, P.J. and Bateman, R.M. (2003) Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci. 8, 7682.
  • Schwarz-Sommer, Z., Hue, I., Huijser, P., Flor, P.J., Hansen, R., Tetens, P., Lönning, W.-E., Saedler, H. and Sommer, H. (1992) Characterization of the Antirrhinum floral homeotic MADS-box gene DEFICIENS, evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251263.
  • Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonnig, W.E., Saedler, H. and Schwarz-Sommer, Z. (1990) DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus, the protein shows homology to transcription factors. EMBO J. 9, 605613.
  • Swamy, B.G.L. (1948) Vascular anatomy of orchid flowers. Bot. Mus. Leafl. Harvard Univ. 13, 6195.
  • Theißen, G. (2001) Development of floral organ identity, stories from the MADS house. Curr. Opin. Plant Biol. 4, 7585.
  • Theißen, G. and Melzer, R. (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. 100, 603619.
  • Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W.E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. (1992) GLOBOSA, a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 46934704.
  • Tsai, W.C. and Chen, H.H. (2006) The orchid MADS-box genes controlling floral morphogenesis. Sci. World J. 6, 19331944.
  • Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H. and Chen, H.H. (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 46, 831844.
  • Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H. and Chen, H.H. (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. 46, 11251139.
  • van Tunen, A.J., Eikelboom, W. and Angenent, G. (1993) Floral organogenesis in Tulipa. Flowering Newslett. 16, 3338.
  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, R34.
  • Weigel, D. and Meyerowitz, E.M. (1994) The ABCs of floral homeotic genes. Cell, 78, 203209.
  • Xu, Y., Teo, L.L., Zhou, J., Kumar, P.P. and Yu H. (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 46, 5468.
  • Zahn, L.M., Leebens-Mack, J., DePamphilis, C.W., Ma, H. and Theißen, G. (2005) To B or not to B a flower, the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered. 96, 225240.