SEARCH

SEARCH BY CITATION

References

  • Baum, D.A. and Whitlock, B.A. (1999) Plant development: genetic clues to petal evolution. Curr. Biol. 9, R525R527.
  • Bowman, J.L. (1997) Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J. Biosci. 22, 515527.
  • Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 120.
  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N. and Coen, E. (1993) Complementary Floral homeotic phenotypes result from opposite orientations of a transposon at the plena-locus of Antirrhinum. Cell, 72, 8595.
  • Brockington, S.F., Alexandre, R., Ramdial, J., Moore, M.J., Crawley, S., Dhingra, A., Hilu, K., Soltis, D.E. and Soltis, P.S. (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int. J. Plant Sci. 170, 627643.
  • Cantino, P.D., Doyle, J.A., Graham, S.W., Judd, W.S., Olmstead, R.G., Soltis, D.E., Soltis, P.S. and Donoghue, M.J. (2007) Towards a phylogenetic nomenclature of Tracheophyta. Taxon, 56, 822846.
  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls – genetic interactions controlling flower development. Nature, 353, 3137.
  • Drea, S., Hileman, L.C., De Martino, G. and Irish, V.F. (2007) Functional analyses of genetic pathways controlling petal specification in poppy. Development, 134, 41574166.
  • Endress, P.K. (1994) Diversity and Evolutionary Biology of Tropical Flowers. Cambridge, UK: Cambridge University Press.
  • Geuten, K., Becker, A., Kaufmann, K., Caris, P., Janssens, S., Viaene, T., Theissen, G. and Smets, E. (2006) Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Plant J. 47, 501518.
  • Goto, K. and Meyerowitz, E.M. (1994) Function and regulation of the Arabidopsis floral homeotic gene Pistillata. Genes Dev. 8, 15481560.
  • Hiepko, P. (1965) Vergleichend-morphologische und entwicklungsge-schichtliche Untersuchungen über das Perianth bei den Polycarpicae. Bot. Jahrb. Syst. 84, 359508.
  • Hofmann, U. (1994) Flower morphology and ontogeny. In Caryophyllales: Evolution and Systematics (Behnke, H.-D. and Mabry, T.J., eds). Berlin: Springer, pp. 123166.
  • Irish, V.F. (2003) The evolution of floral homeotic gene function. Bioessays, 25, 637646.
  • Irish, V.F. (2009) Evolution of petal identity. J. Exp. Bot. 60, 25172527.
  • Jack, T., Brockman, L.L. and Meyerowitz, E.M. (1992) The homeotic gene Apetala3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683697.
  • Jaramillo, M.A. and Kramer, E.M. (2004) APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evol. Dev. 6, 449458.
  • Jaramillo, M.A. and Kramer, E.M. (2007) The role of developmental genetics in understanding homology and morphological evolution in plants. Int. J. Plant Sci. 168, 6172.
  • Kaplan, D.R. (1973) The problem of leaf morphology and evolution in the monocotyledons. Q. Rev. Biol. 48, 437457.
  • Kim, S., Koh, J., Yoo, M.J., Kong, H.Z., Hu, Y., Ma, H., Soltis, P.S. and Soltis, D.E. (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J. 43, 724744.
  • Klak, C., Khunou, A., Reeves, G. and Hedderson, T. (2003) A phylogenetic hypothesis for the Aizoaceae (Caryophyllales) based on four plastid DNA regions. Am. J. Bot. 90, 14331445.
  • Kramer, E.M. and Irish, V.F. (1999) Evolution of genetic mechanisms controlling petal development. Nature, 399, 144148.
  • Kramer, E.M. and Irish, V.F. (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int. J. Plant Sci. 161, S29S40.
  • Kramer, E.M. and Jaramillo, M.A. (2005) Genetic basis for innovations in floral organ identity. J. Exp. Zool. B Mol. Dev. Evol. 304B, 526535.
  • Kramer, E.M., Dorit, R.L. and Irish, V.F. (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 149, 765783.
  • Kramer, E.M., Di Stilio, V.S. and Schluter, P.M. (2003) Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int. J. Plant Sci. 164, 111.
  • Kramer, E.M., Holappa, L., Gould, B., Jaramillo, M.A., Setnikov, D. and Santiago, P.M. (2007) Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell, 19, 750766.
  • Krizek, B.A. and Meyerowitz, E.M. (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 122, 1122.
  • Malcomber, S.T. and Kellogg, E.A. (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell, 16, 16921706.
  • Mizukami, Y. and Ma, H. (1992) Ectopic expression of the floral homeotic gene agamous in transgenic Arabidopsis plants alters floral organ identity. Cell, 71, 119131.
  • Nylander, J. (2004) MrModeltest, version 2. Uppsala: Evolutionary Biology Centre, Uppsala University, http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html
  • Park, J.H., Ishikawa, Y., Yoshida, R., Kanno, A. and Kameya, T. (2003) Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol. Biol. 51, 867875.
  • Park, J.H., Ishikawa, Y., Ochiai, T., Kanno, A. and Kameya, T. (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol. 45, 325332.
  • Payer, J.-B. (1857) Traite d’Organogenie Comparee de la Fleur. Paris: Masson.
  • Ronse De Craene, L.P. (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots Ann. Bot. 100, 621630.
  • Ronse De Craene, L. (2008) Homology and evolution of petals in the core eudicots. Syst. Bot. 33, 301325.
  • Soltis, D.E., Ma, H., Frohlich, M.W., Soltis, P.S., Albert, V.A., Oppenheimer, D.G., Altman, N.S., dePamphilis, C.W. and Leebens-Mack, J. (2007) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci. 12, 358367.
  • Sommer, H., Nacken, W., Beltran, P., Huijser, P., Pape, H., Hansen, R., Flor, P., Saedler, H. and Schwarzsommer, Z. (1991) Properties of deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus. Development, 9, 169175.
  • Stellari, G.M., Jaramillo, M.A. and Kramer, E.M. (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol. Biol. Evol. 21, 506519.
  • Takhtajan, A.L. (1991) Evolutionary Trends in Flowering Plants. New York: Columbia University Press.
  • Walker, J.W. and Walker, A.G. (1984) Ultrastructure of lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. Ann. Mo. Bot. Gard. 71, 464521.
  • Whipple, C.J., Zanis, M.J., Kellogg, E.A. and Schmidt, R.J. (2007) Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc. Natl Acad. Sci. USA, 104, 10811086.
  • Zachgo, S., Silva, E.D., Motte, P., Trobner, W., Saedler, H. and Schwarzsommer, Z. (1995) Functional-analysis of the Antirrhinum floral homeotic deficiens gene in-vivo and in-vitro by using a temperature-sensitive mutant. Development, 121, 28612875.
  • Zwickl, D. (2000) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion, PhD Thesis. Austin: University of Texas.