SEARCH

SEARCH BY CITATION

References

  • Baker, E.A., Bukovac, M.J. and Hunt, G.M. (1982) Composition of tomato fruit cuticle as related to fruit growth and development. In The Plant Cuticle (Cutler, D.F., Alvin, K.L. and Price, C.E., eds). London: Academic Press, pp. 3344.
  • Barthlott, W. and Neinhuis, C. (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.
  • Bauer, S., Schulte, E. and Thier, H. (2004a) Composition of the surface wax from tomatoes: I. Identification of the components by GC/MS. Eur. Food Res. Technol. 219, 223228.
  • Bauer, S., Schulte, E. and Thier, H. (2004b) Composition of the surface wax from tomatoes: II. Quantification of the components at the ripe red stage and during ripening. Eur. Food Res. Technol. 219, 487491.
  • Bonaventure, G., Beisson, F., Ohlrogge, J. and Pollard, M. (2004) Analysis of the aliphatic monomer composition of polyesters associated with Arabidopsis epidermis: occurrence of octadeca-cis-6, cis-9-diene-1,18-dioate as the major component. Plant J. 40, 920930.
  • Buda, G.J., Isaacson, T., Matas, A.J., Paolillo, D.J. and Rose, J.K. (2009) Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy. Plant J. 60, 378385.
  • Buschhaus, C. and Jetter, R. (2011) Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces? J. Exp. Bot. 62, 841853.
  • Croteau, R. and Kolattukudy, P.E. (1975a) Biosynthesis of hydroxyfatty acid polymers. Enzymatic epoxidation of 18-hydroxyoleic acid to 18-hydroxy-cis-9,10-epoxystearic acid by a particulate preparation from spinach (Spinacia oleracea). Arch. Biochem. Biophys. 170, 6172.
  • Croteau, R. and Kolattukudy, P.E. (1975b) Biosynthesis of hydroxyfatty acid polymers. Enzymatic hydration of 18-hydroxy-cis-9,10-epoxystearic acid to threo-9,10,18-trihydroxystearic acid by a particulate preparation from apple (Malus pumila). Arch. Biochem. Biophys. 170, 7381.
  • Dillon, M.O. (1989) Origins and diversity of the lomas formations in the Atacama and Peruvian Deserts of western South America. Am. J. Bot. 76, (Abstract) 212.
  • Edwards, D. (1993) Cells and tissues in the vegetative sporophytes of early land plants. New Phytol. 125, 225247.
  • Eshed, Y. and Zamir, D. (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 11471162.
  • Fernandez, V., Khayet, M., Montero-Prado, P. et al. (2011) New insights into the properties of pubescent surfaces: peach fruit as a model. Plant Physiol. 156, 20982108.
  • Franke, R., Briesen, I., Wojciechowski, T., Faust, A., Yephremov, A., Nawrath, C. and Schreiber, L. (2005) Apoplastic polyesters in Arabidopsis surface tissues–a typical suberin and a particular cutin. Phytochem. 66, 26432658.
  • Fukumoto, S. and Fujimoto, T. (2002) Deformation of lipid droplets in fixed samples. Histochem. Cell Biol. 118, 423428.
  • Graca, J., Schreiber, L., Rodrigues, J. and Pereira, H. (2002) Glycerol and glyceryl esters of omega-hydroxyacids in cutins. Phytochem. 61, 205215.
  • Greer, S., Wen, M., Bird, D., Wu, X., Samuels, L., Kunst, L. and Jetter, R. (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol. 145, 653667.
  • Holloway, P.J. (1982) The chemical constiution of plant cutins. In The Plant Cuticle (Cutler, D.F., Alvin, K.L. and Price, C.E., eds). London: Academic Press, pp. 4585.
  • Hovav, R., Chehanovsky, N., Moy, M., Jetter, R. and Schaffer, A.A. (2007) The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit. Plant J. 52, 627639.
  • Isaacson, T., Kosma, D.K., Matas, A.J. et al. (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J. 60, 363377.
  • Javelle, M., Vernoud, V., Rogowsky, P.M. and Ingram, G.C. (2011) Epidermis: the formation and functions of a fundamental plant tissue. New Phytol. 189, 1739.
  • Jeffree, C.E. (2006) The fine structure of the plant cuticle. In Biology of the Plant Cuticle (Riederer, M. and Müller, C., eds). Oxford, UK: Blackwell, pp. 11125.
  • Jenks, M.A. and Ashworth, E.N. (1999) Plant epicuticular waxes: function, production and genetics. Hortic. Rev. 23, 168.
  • Jetter, R., Kunst, L. and Samuels, A.L. (2006) Composition of plant cuticular waxes. In Biology of the Plant Cuticle (Riederer, M. and Müller, C., eds). Oxford, UK: Blackwell, pp. 145181.
  • Kolattukudy, P.E. (2001) Polyesters in higher plants. Adv. Biochem. Eng. Biotechnol. 71, 149.
  • Kolattukudy, P.E., Walton, T.J. and Kushwaha, R.P. (1973) Biosynthesis of the C18 family of cutin acids: omega-hydroxyoleic acid, omega-hydroxy-9,10-epoxystearic acid, 9,10,18-trihydroxystearic acid, and their delta12-unsaturated analogs. Biochemistry 12, 44884498.
  • Kosma, D.K., Bourdenx, B., Bernard, A., Parsons, E.P., Lu, S., Joubes, J. and Jenks, M.A. (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151, 19181929.
  • Kunst, L. and Samuels, L. (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr. Opin. Plant Biol. 12, 721727.
  • Leide, J., Hildebrandt, U., Reussing, K., Riederer, M. and Vogg, G. (2007) The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: Effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6). Plant Physiol. 144, 16671679.
  • Leide, J., Hildebrandt, U., Vogg, G. and Riederer, M. (2011) The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. J. Plant Physiol. 168, 871877.
  • Li-Beisson, Y., Pollard, M., Sauveplane, V., Pinot, F., Ohlrogge, J. and Beisson, F. (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc. Natl Acad. Sci. USA 106, 2200822013.
  • Mitchell-Olds, T., Feder, M. and Wray, G. (2008) Evolutionary and ecological functional genomics. Heredity 100, 101102.
  • Monforte, A.J. and Tanksley, S.D. (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43, 803813.
  • Moyle, L.C. (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanum sect Lycopersicon). Evolution 62, 29953013.
  • Mueller, L.A., Solow, T.H., Taylor, N. et al. (2005) The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol. 138, 13101317.
  • Nakazato, T., Warren, D.L. and Moyle, L.C. (2010) Ecological and geographic modes of species divergence in wild tomatoes. Am. J. Bot. 97, 680693.
  • Niklas, K.J. (1980) Paleobiochemical techniques and their applications to paleobotany. In Progress in Phytochemistry, Vol. 6 (Reinhold, L., Harborne, J.B. and Swain, T., eds). Oxford, UK: Pergamon Press, pp. 143181.
  • Peralta, I.E., Spooner, D.M. and Knapp, S. (2008) Taxonomy of wild tomatoes and their relatives (Solanum sect Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst. Bot. Monogr. 84, 1186.
  • Pfündel, E.E., Agati, G. and Cerovic, Z.G. (2006) Optical properties of plant surfaces. In Biology of the Plant Cuticle (Riederer, M. and Müller, C., eds). Oxford, UK: Blackwell, pp. 216249.
  • Pinot, F. and Beisson, F. (2011) Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J. 278, 195205.
  • Pollard, M., Beisson, F., Li, Y. and Ohlrogge, J.B. (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci. 13, 236246.
  • Prudent, M., Causse, M., Genard, M., Tripodi, P., Grandillo, S. and Bertin, N. (2009) Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. J. Exp. Bot. 60, 923937.
  • Reina-Pinto, J.J. and Yephremov, A. (2009) Surface lipids and plant defenses. Plant Physiol. Biochem. 47, 540549.
  • Riederer, M. and Schreiber, L. (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 20232032.
  • Rodriguez, F., Wu, F., Ane, C., Tanksley, S. and Spooner, D.M. (2009) Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evol. Biol. 9, 191.
  • Rosset, A., Spadola, L. and Ratib, O. (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17, 205216.
  • Samuels, A.L., Kunst, L. and Jetter, R. (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59, 683707.
  • Sauveplane, V., Kandel, S., Kastner, P.E., Ehlting, J., Compagnon, V., Werck-Reichhart, D. and Pinot, F. (2009) Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. FEBS J. 276, 719735.
  • Schauer, N., Zamir, D. and Fernie, A.R. (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot. 56, 297307.
  • Schönherr, J. and Riederer, M. (1986) Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ. 9, 459466.
  • Seo, P.J., Lee, S.B., Suh, M.C., Park, M.J., Go, Y.S. and Park, C.M. (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23, 11381152.
  • Vogg, G., Fischer, S., Leide, J., Emmanuel, E., Jetter, R., Levy, A.A. and Riederer, M. (2004) Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J. Exp. Bot. 55, 14011410.
  • Walton, T.J. (1990) Waxes, cutin and suberin. In Methods in Plant Biochemistry: Lipids, Membranes and Aspects of Photobiology (Harwood, J.L. and Bowyer, J.R., eds). London: Academic Press, pp. 105158.
  • Wang, Z., Guhling, O., Yao, R., Li, F., Yeats, T.H., Rose, J.K. and Jetter, R. (2011) Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant Physiol. 155, 540552.
  • Xu, H.L., Gauthier, L. and Gosselin, A. (1995) Stomatal and cuticular transpiration of greenhouse tomato plants in response to high solution electrical-conductivity and low soil-water content. J. Am. Soc. Hortic. Sci. 120, 417422.