SEARCH

SEARCH BY CITATION

References

  • Ariel, F., Diet, A., Verdenaud, M., Gruber, V., Frugier, F., Chan, R. and Crespi, M. (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1 . Plant Cell, 22, 21712183.
  • Aubert, A., Marion, J., Boulogne, C., Bourge, M., Abreu, S., Bellec, Y., Faure, J.D. and Satiat-Jeunemaitre, B. (2011) Sphingolipids involvement in plant endomembrane differentiation: the BY2 case. Plant J. 65, 958971.
  • Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana, C., Mehrnia, M., Zanor, M.I., Kohler, B. and Mueller-Roeber, B. (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 62, 250264.
  • Benedito, V.A., Torres-Jerez, I., Murray, J.D. et al. (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J. 55, 504513.
  • Boisson-Dernier, A., Chabaud, M., Garcia, F., Becard, G., Rosenberg, C. and Barker, D.G. (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol. Plant–Microbe Interact. 14, 695700.
  • Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J.-P., Niebel, A., Crespi, M. and Frugier, F. (2008) microRNA166 controls root and nodule development in Medicago truncatula. Plant J. 54, 876887.
  • Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K. and Leaver, C.J. (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 42(4): 56785.
  • Chung, P.J., Kim, Y.S., Jeong, J.S., Park, S.H., Nahm, B.H. and Kim, J.K. (2009) The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. Plant J. 59, 764776.
  • Combier, J.P., Frugier, F., de Billy, F. et al. (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev. 20, 30843088.
  • Crespi, M. and Frugier, F. (2008) De novo organ formation from differentiated cells: root nodule organogenesis. Sci. Signal, 1, re11.
  • De Michele, R., Formentin, E., Todesco, M. et al. (2009) Transcriptome analysis of Medicago truncatula leaf senescence: similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. New Phytol. 181, 563575.
  • Frugier, F., Poirier, S., Satiat-Jeunemaitre, B., Kondorosi, A. and Crespi, M. (2000) A Kruppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes Dev. 14, 475482.
  • Fukaki, H. and Tasaka, M. (2009) Hormone interactions during lateral root formation. Plant Mol. Biol. 69, 437449.
  • Gonzalez-Rizzo, S., Crespi, M. and Frugier, F. (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell, 18, 26802693.
  • Gonzalez-Rizzo, S., Laporte, P., Crespi, M. and Frugier, F. (2009) Legume root architecture: a peculiar root system. In Root Development (Beeckman, T., ed.). Oxford: Blackwell Publishing, pp. 239287.
  • Gruber, V., Blanchet, S., Diet, A., Zahaf, O., Boualem, A., Kakar, K., Alunni, B., Udvardi, M., Frugier, F. and Crespi, M. (2009) Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Mol. Genet. Genomics, 281, 5566.
  • Guo, Y. and Gan, S. (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46, 601612.
  • Guo, Y., Cai, Z. and Gan, S. (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ. 27, 521549.
  • d’Haeseleer, K., Den Herder, G., Laffont, C. et al. (2011) Transcriptional and posttranscriptional regulation of a NAC1 transcription factor in Medicago truncatula roots. New Phytol. 191, 647661.
  • Harrison, J., Jamet, A., Muglia, C.I., Van de Sype, G., Aguilar, O.M., Puppo, A. and Frendo, P. (2005) Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti. J. Bacteriol. 187, 168174.
  • Hawes, C.R. and Satiat-Jeunemaitre, B. (2001) Trekking along the cytoskeleton. Plant Physiol. 125, 119122.
  • He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S. and Chen, S.Y. (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903916.
  • Heckmann, A.B., Lombardo, F., Miwa, H., Perry, J.A., Bunnewell, S., Parniske, M., Wang, T.L. and Downie, J.A. (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 142, 17391750.
  • Jensen, M.K., Kjaersgaard, T., Nielsen, M.M., Galberg, P., Petersen, K., O’Shea, C. and Skriver, K. (2010) The Arabidopsis thaliana NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling. Biochem. J. 426, 183196.
  • Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Do Choi, Y., Kim, M., Reuzeau, C. and Kim, J.K. (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153, 185197.
  • Kalo, P., Gleason, C., Edwards, A. et al. (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science, 308, 17861789.
  • Kariola, T., Brader, G., Helenius, E., Li, J., Heino, P. and Palva, E.T. (2006) EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol. 142, 15591573.
  • Kouchi, H., Imaizumi-Anraku, H., Hayashi, M., Hakoyama, T., Nakagawa, T., Umehara, Y., Suganuma, N. and Kawaguchi, M. (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol. 51, 13811397.
  • Laporte, P., Satiat-Jeunemaitre, B., Velasco, I., Csorba, T., Van de Velde, W., Campalans, A., Burgyan, J., Arevalo-Rodriguez, M. and Crespi, M. (2010) A novel RNA-binding peptide regulates the establishment of the Medicago truncatula–Sinorhizobium meliloti nitrogen-fixing symbiosis. Plant J. 62, 2438.
  • Li, D., Su, Z., Dong, J. and Wang, T. (2009) An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics, 10, 517.
  • Lim, P.O., Kim, H.J. and Nam, H.G. (2007) Leaf senescence. Annu. Rev. Plant Biol. 58, 115136.
  • Lodwig, E.M., Hosie, A.H., Bourdès, A., Findlay, K., Allaway, D., Karunakaran, R., Downie, J.A. and Poole, P.S. (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature, 422, 722726.
  • Lopez-Bucio, J., Cruz-Ramirez, A. and Herrera-Estrella, L. (2003) The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280287.
  • de Lorenzo, L., Merchan, F., Blanchet, S., Megias, M., Frugier, F., Crespi, M. and Sousa, C. (2007) Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiol. 145, 15211532.
  • Malamy, J.E. (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28, 6777.
  • Marsh, J.F., Rakocevic, A., Mitra, R.M., Brocard, L., Sun, J., Eschstruth, A., Long, S.R., Schultze, M., Ratet, P. and Oldroyd, G.E. (2007) Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol. 144, 324335.
  • Merchan, F., de Lorenzo, L., Rizzo, S.G., Niebel, A., Manyani, H., Frugier, F., Sousa, C. and Crespi, M. (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J. 51, 117.
  • Middleton, P.H., Jakab, J., Penmetsa, R.V. et al. (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell, 19, 12211234.
  • Murakami, Y., Miwa, H., Imaizumi-Anraku, H., Kouchi, H., Downie, J.A., Kawaguchi, M. and Kawasaki, S. (2006) Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS family, required for NIN and ENOD40 gene expression in nodule initiation. DNA Res. 13, 255265.
  • Nakashima, K., Tran, L.S., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617630.
  • Nishimura, R., Ohmori, M. and Kawaguchi, M. (2002) The novel symbiotic phenotype of enhanced-nodulating mutant of Lotus japonicus: astray mutant is an early nodulating mutant with wider nodulation zone. Plant Cell Physiol. 43, 853859.
  • Oldroyd, G.E. and Downie, J.A. (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59, 519546.
  • Olsen, A.N., Ernst, H.A., Leggio, L.L. and Skriver, K. (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 7987.
  • Perez Guerra, J.C., Coussens, G., De Keyser, A., De Rycke, R., De Bodt, S., Van De Velde, W., Goormachtig, S. and Holsters, M. (2010) Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol. 152, 15741584.
  • Perilli, S., Moubayidin, L. and Sabatini, S. (2010) The molecular basis of cytokinin function. Curr. Opin. Plant Biol. 13, 2126.
  • Pinheiro, G.L., Marques, C.S., Costa, M.D., Reis, P.A., Alves, M.S., Carvalho, C.M., Fietto, L.G. and Fontes, E.P. (2009) Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene, 444, 1023.
  • Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., Crespi, M. and Frugier, F. (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65, 622633.
  • Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M.M., de Felipe, M.R., Harrison, J., Vanacker, H. and Foyer, C.H. (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol. 165, 683701.
  • Quandt, J., Puhler, A. and Broer, I (1993) Transgenic root nodules of Vicia hirsuta: A fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol. Plant Microbe Interact. 6, 699706.
  • Sablowski, R.W. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93103.
  • Schauser, L., Handberg, K., Sandal, N., Stiller, J., Thykjaer, T., Pajuelo, E., Nielsen, A. and Stougaard, J. (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol. Gen. Genet. 259, 414423.
  • Smit, P., Raedts, J., Portyanko, V., Debelle, F., Gough, C., Bisseling, T. and Geurts, R. (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 308, 17891791.
  • Van de Velde, W., Guerra, J.C., De Keyser, A., De Rycke, R., Rombauts, S., Maunoury, N., Mergaert, P., Kondorosi, E., Holsters, M. and Goormachtig, S. (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol. 141, 711720.
  • Vasse, J., de Billy, F., Camut, S. and Truchet, G. (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J. Bacteriol. 172, 42954306.
  • Vernie, T., Moreau, S., de Billy, F., Plet, J., Combier, J.P., Rogers, C., Oldroyd, G., Frugier, F., Niebel, A. and Gamas, P. (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell, 20, 26962713.
  • Willemsen, V., Bauch, M., Bennett, T., Campilho, A., Wolkenfelt, H., Xu, J., Haseloff, J. and Scheres, B. (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev. Cell, 15, 913922.
  • Winicov, I.I. and Bastola, D.R. (1999) Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiol. 120, 473480.
  • Wu, Y., Deng, Z., Lai, J. et al. (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 19, 12791290.
  • Zhao, Q., Gallego-Giraldo, L., Wang, H., Zeng, Y., Ding, S.Y., Chen, F. and Dixon, R.A. (2010) An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J. 63, 100114.