SEARCH

SEARCH BY CITATION

References

  • Ballicora, M.A., Fu, Y., Nesbitt, N.M. and Preiss, J. (1998) ADP-glucose pyrophosphorylase from potato tubers. Site-directed mutagenesis studies of the regulatory sites. Plant Physiol. 118, 265274.
  • Ballicora, M.A., Fu, Y., Frueauf, J.B. and Preiss, J. (1999) Heat stability of the potato tuber ADP-glucose pyrophosphorylase: role of Cys residue 12 in the small subunit. Biochem. Biophys. Res. Commun. 257, 782786.
  • Ballicora, M.A., Frueauf, J.B., Fu, Y., Schürmann, P. and Preiss, J. (2000) Activation of the potato tuber ADP-glucose pyrophosphorylase by thioredoxin. J. Biol. Chem. 275, 13151320.
  • Ballicora, M.A., Iglesias, A.A. and Preiss, J. (2004) ADP-glucose pyrophosphorylase: a regulatory enzyme for starch synthesis. Photosynth. Res. 79, 124.
  • Bent, A.F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 124, 15401547.
  • Bläsing, O.E., Gibon, Y., Günther, M., Höhne, M., Morcuende, R., Osuna, D., Thimm, O., Usadel, B., Scheible, W.R. and Stitt, M. (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell, 17, 32573281.
  • Boehlein, S., Shaw, J.R., Stewart, J.D. and Hannah, L.C. (2010) Studies of the kinetic mechanism of maize endosperm ADP-glucose pyrophosphorylase uncovered complex regulatory properties. Plant Physiol. 152, 10561064.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248254.
  • Chatterton, N.J. and Silvius, J.E. (1979) Photosynthate partitioning into starch in soybean leaves, effects of photoperiod versus photosynthetic period duration. Plant Physiol. 64, 749753.
  • Chatterton, N.J. and Silvius, J.E. (1980) Photosynthate partitioning as affected by daily photosynthetic period duration in six species. Physiol. Plant. 49, 141144.
  • Chatterton, N.J. and Silvius, J.E. (1981) Photosynthate partitioning into starch in soybean leaves: irradiance level and daily photsynthetic period duration effects. Plant Physiol. 67, 257260.
  • Crevillén, P., Ballicora, M.A., Mérida, Á., Preiss, J. and Romero, J.M. (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J. Biol. Chem. 31, 2850828515.
  • Crevillén, P., Ventriglia, T., Pinto, F., Orea, A., Mérida, Á. and Romero, J.M. (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J. Biol. Chem. 280, 81438149.
  • Cross, J.M., Clancy, M., Shaw, J.R., Greene, T.W., Schmidt, R.R., Okita, T.W. and Hannah, L.C. (2004) Both subunits of ADP-glucose pyrophosphorylase are regulatory. Plant Physiol. 135, 137144.
  • Delatte, T., Trevisan, M., Parker, M.L. and Zeeman, S.C. (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J. 41, 815830.
  • Dickinson, D.B. and Preiss, J. (1969) Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol. 44, 10581062.
  • Fu, Y., Ballicora, M.A., Leykam, J.F. and Preiss, J. (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J. Biol. Chem. 273, 2504525052.
  • Fulton, D.C., Stettler, M., Mettler, T. et al. (2008) β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. Plant Cell, 20, 10401058.
  • Geiger, D.R. and Servaites, J.C. (1994) Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 235256.
  • Gibon, Y., Vigeolas, H., Tiessen, A., Geigenberger, P. and Stitt, M. (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J. 30, 221235.
  • Gibon, Y., Blasing, O.E., Palacios-Rojas, N., Pankovic, D., Hendriks, J.H., Fisahn, J., Hohne, M., Gunther, M. and Stitt, M. (2004a) Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J. 39, 847862.
  • Gibon, Y., Blaesing, O.E., Hannemann, J., Carillo, P., Höhne, M., Hendriks, J.H., Palacios, N., Cross, J., Selbig, T. and Stitt, M. (2004b) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell, 16, 33043325.
  • Gibon, Y., Pyl, E.T., Sulpice, R., Lunn, J.E., Hohne, M., Gunther, M. and Stitt, M. (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 32, 859874.
  • Graf, A. and Smith, A.M. (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci. 16, 169175.
  • Graf, A., Schlereth, A., Stitt, M. and Smith, A.M. (2010) Starch degradation in Arabidopsis leaves is controlled by the circadian clock. Proc. Natl Acad. Sci. USA, 107, 94589463.
  • Hädrich, N., Gibon, Y., Schudoma, C., Altmann, T., Lunn, J.E. and Stitt, M. (2011) Use of TILLING and robotised enzyme assays to generate an allelic series of Arabidopsis thaliana mutants with altered ADP-glucose pyrophosphorylase activity. J. Plant Physiol. 168, 13951405.
  • Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S. and Mullineaux, P.M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819832.
  • Hendriks, J.H.M., Kolbe, A., Gibon, Y., Stitt, M. and Geigenberger, P. (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol. 133, 838849.
  • Kolbe, A., Tiessen, A., Schluepmann, H., Paul, M., Ulrich, S. and Geigenberger, P. (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc. Natl Acad. Sci. USA, 102, 1111811123.
  • Lin, T.P., Caspar, T., Somerville, C. and Preiss, J. (1988a) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh. lacking ADPglucose pyrophosphorylase activity. Plant Physiol. 86, 11311135.
  • Lin, T.P., Caspar, T., Somerville, C. and Preiss, J. (1988b) A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol. 88, 11751181.
  • Lorenzen, J.H. and Ewing, E.E. (1992) Starch accumulation in leaves of potato (Solanum tuberosum L.) during the first 18 days of photoperiod treatment. Ann. Bot. 69, 481485.
  • Lu, Y., Gehan, J.P. and Sharkey, T.D. (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol. 138, 22802291.
  • Lu, Y., Steichen, J.M., Weise, S.E. and Sharkey, T.D. (2006) Cellular and organ level localization of maltose in maltose-excess Arabidopsis mutants. Planta, 224, 935943.
  • Lunn, J.E., Feil, R., Hendriks, J.H.M., Gibon, Y., Morcuende, R., Osuna, D., Scheible, W.R., Carillo, P., Hajirezaei, M.R. and Stitt, M. (2006) Sugar-induced increases in trehalose-6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J. 397, 139148.
  • Lyerly Linebarger, C.R., Boehlein, S.K., Sewell, A.K., Shaw, J. and Hannah, L.C. (2005) Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit. Plant Physiol. 139, 16251634.
  • MacRae, E.A. and Lunn, J.E. (2006) Control of sucrose biosynthesis. In Advances in Plant Research, Volume 22: Control of Primary Metabolism in Plants (Plaxton, W.C. and McManus, M.T., eds). Oxford: Blackwell, pp. 234257.
  • Michalska, J., Zauber, H., Buchanan, B.B., Cejudo, F.J. and Geigenberger, P. (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc. Natl Acad. Sci. USA, 106, 99089913.
  • Morell, M., Bloom, M., Knowles, V. and Preiss, J. (1987) Subunit structure of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol. 85, 182187.
  • Mullen, J.A. and Koller, R. (1988) Daytime and nighttime carbon balance and assimilate export in soybean leaves at different photon flux densities. Plant Physiol. 86, 880884.
  • Neuhaus, H.E. and Stitt, M. (1990) Control analysis of photosynthate partitioning – impact of reduced activity of ADP-glucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana (L.) Heynh. Planta, 182, 445454.
  • Neuhaus, H.E., Kruckeberg, A.L., Feil, R., Gottlieb, L. and Stitt, M. (1989) Dosage mutants of phosphoglucose isomerase in the cytosol and chloroplasts of Clarkia xantiana. II. Study of the mechanisms which regulate photosynthate partitioning. Planta, 178, 110122.
  • Nielsen, T.H., Krapp, A., Roper-Schwarz, U. and Stitt, M. (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ. 21, 443454.
  • Niittyla, T., Messerli, G., Trevisan, M., Chen, J., Smith, A.M. and Zeeman, S.C. (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science, 303, 8789.
  • Obana, Y., Omoto, D., Kato, C. et al. (2006) Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosphorylase in Arabidopsis thaliana. Plant Sci. 170, 111.
  • Okita, T.W., Nakata, P.A., Anderson, J.M., Sowokinos, J., Morell, M. and Preiss, J. (1990) The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol. 93, 785790.
  • Piques, M., Schulze, W.X., Höhne, M., Usadel, B., Gibon, Y., Rohwer, J. and Stitt, M. (2009) Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol. Syst. Biol. 5, 314.
  • Preiss, J. (1988) Biosynthesis of starch and its regulation. In The Biochemistry of Plants, Volume 14: Carbohydrates, Structure and Function (Preiss, J., ed.). New York: Academic Press, pp. 181254.
  • Sambrook, J. and Russell, D.R. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Scheible, W.R., Gonzalez-Fontes, A., Lauerer, M., Müller-Röber, B., Caboche, M. and Stitt, M. (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 9, 783798.
  • Smith, A.M. and Stitt, M. (2007) Coordination of carbon supply and plant growth. Plant Cell Environ. 30, 11261149.
  • Smith, A.M., Bettey, M. and Bedford, I.D. (1989) Evidence that the rb locus alters the starch content of developing pea embryos through an effect on ADP glucose pyrophosphorylase. Plant Physiol. 89, 12791284.
  • Smith, A.M., Zeeman, S.C. and Smith, S.M. (2005) Starch degradation. Annu. Rev. Plant Biol. 56, 7398.
  • Sokolov, L.N., Dejardin, A. and Kleczkowski, L.A. (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem. J. 336, 681687.
  • Sowokinos, J.R. (1981) Pyrophosphorylases in Solanum tuberosum. 2. Catalytic properties and regulation of ADP-glucose and UDP-glucose pyrophosphorylase activities in potatoes. Plant Physiol. 68, 924929.
  • Sowokinos, J.R. and Preiss, J. (1982) Pyrophosphorylases in Solanum tuberosum. 3. Purification, physical and catalytic properties of ADP-glucose pyrophosphorylase in potatoes. Plant Physiol. 69, 14591466.
  • Stitt, M., Bulpin, P.V. and ap Rees, T. (1978) Pathway of starch breakdown in photosynthetic tissue of Pisum sativum. Biochim. Biophys. Acta, 544, 200214.
  • Stitt, M., Gibon, Y., Lunn, J.E. and Piques, M. (2007) Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. Funct. Plant Biol. 34, 526549.
  • Stitt, M., Lunn, J. and Usadel, B. (2010) Primary photosynthetic metabolism – more than the icing on the cake. Plant J. 61, 10671091.
  • Sun, J., Okita, T.W. and Edwards, G.E. (1999) Modification of carbon partitioning, photosynthetic capacity, and O2 sensitivity in Arabidopsis plants with low ADP-glucose pyrophosphorylase activity. Plant Physiol. 119, 267276.
  • Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L.A., Rhee, S.Y. and Stitt, M. (2004) MapMan, a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914939.
  • Tiessen, A., Hendriks, J.H.M., Stitt, M., Branscheid, A., Gibon, Y., Farré, E.M. and Geigenberger, P. (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 14, 21912213.
  • Tsai, C.Y. and Nelson, O.E. (1966) Starch-deficient maize mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science, 151, 341343.
  • Ventriglia, T., Kuhn, M.L., Ruiz, M.T., Ribeiro-Pedro, M., Valverde, F., Ballicora, M.A., Preiss, J. and Romero, J.M. (2008) Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic. Plant Physiol. 148, 6576.
  • Wang, S.-M., Chu, B., Lue, W.-L., Yu, T.-S., Eimert, K. and Chen, J. (1997) adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thaliana. Plant J. 11, 11211126.
  • Wang, S.-M., Lue, W.-L., Yu, T.-S., Long, J.-H., Wang, C.-N., Eimert, K. and Chen, J. (1998) Characterization of ADG1, an Arabidopsis locus encoding for ADPG pyrophosphorylase small subunit, demonstrates that the presence of the small subunit is required for large subunit stability. Plant J. 13, 6370.
  • Weiner, H., Stitt, M. and Heldt, H.W. (1987) Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim. Biophys. Acta, 893, 1321.
  • Zeeman, S.C., Umemoto, T., Lue, W.L., Au-Yeung, P., Martin, C., Smith, A.M. and Chen, J. (1998) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell, 10, 16991711.
  • Zeeman, S.C., Smith, S.M. and Smith, A.M. (2007) The diurnal metabolism of leaf starch. Biochem. J. 401, 1328.