SEARCH

SEARCH BY CITATION

References

  • Adams, M.D., Kelley, J.M., Gocayne, J.D. et al. (1991) Complementary-DNA sequencing – expressed sequence tags and human genome project. Science, 252, 16511656.
  • Alam, P. and Abdin, M.Z. (2011) Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Rep. 30, 19191928.
  • Amelunxen, F. (1965) Elektronenmikroskopische untersuchungen an den Srüsenschuppen von Mentha piperita L.1. Planta Med. 13, 457473.
  • Amelunxen, F., Wahlig, T. and Arbeiter, H. (1969) On presence of essential oil I isolated glandular hairs and trichomes of Mentha piperita L. Z. Pflanzenphysiol. 61, 6872.
  • Ament, K., Kant, M.R., Sabelis, M.W., Haring, M.A. and Schuurink, R.C. (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 135, 20252037.
  • Amme, S., Rutten, T., Melzer, M., Sonsmann, G., Vissers, J.P., Schlesier, B. and Mock, H.P. (2005) A proteome approach defines protective functions of tobacco leaf trichomes. Proteomics, 5, 25082518.
  • Aziz, N., Paiva, N.L., May, G.D. and Dixon, R.A. (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta, 221, 2838.
  • Balkunde, R., Pesch, M. and Hulskamp, M. (2010) Trichome patterning in Arabidopsis thaliana: from genetic to molecular models. In Plant Development, Vol. 91 (Timmermans, M.C.P., ed.). San Diego: Elsevier Academic Press, pp. 299321.
  • Banyai, W., Kirdmanee, C., Mii, M. and Supaibulwatana, K. (2010) Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell Tissue Organ Cult. 103, 255265.
  • Barrero, A.F., Alvarez-Manzaneda, E.J., Chahboun, R. and Arteaga, A.F. (2004) Degradation of the side chain of (−)-sclareol: a very short synthesis of nor-Ambreinolide and ambrox. Synth. Commun. 34, 36313643.
  • Becker, A. and Lange, M. (2010) VIGS – genomics goes functional. Trends Plant Sci. 15, 14.
  • Ben-Israel, I., Yu, G., Austin, M.B., Bhuiyan, N., Auldridge, M., Nguyen, T., Schauvinhold, I., Noel, J.P., Pichersky, E. and Fridman, E. (2009) Multiple biochemical and morphological factors underlie the production of methylketones in tomato trichomes. Plant Physiol. 151, 19521964.
  • Besser, K., Harper, A., Welsby, N., Schauvinhold, I., Slocombe, S., Li, Y., Dixon, R.A. and Broun, P. (2009) Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol. 149, 499514.
  • Birchler, J.A., Krishnaswamy, L., Gaeta, R.T., Masonbrink, R.E. and Zhao, C.Z. (2010) Engineered minichromosomes in plants. Crit. Rev. Plant Sci. 29, 135147.
  • Biswas, K.K., Foster, A.J., Aung, T. and Mahmoud, S.S. (2009) Essential oil production: relationship with abundance of glandular trichomes in aerial surface of plants. Acta Physiol. Plant. 31, 1319.
  • Bleeker, P.M., Diergaarde, P.J., Ament, K., Guerra, J., Weidner, M., Schutz, S., de Both, M.T.J., Haring, M.A. and Schuurink, R.C. (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 151, 925935.
  • Bleeker, P., Spyropoulou, E., Diergaarde, P. et al. (2011) RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol. Biol. 77, 323336.
  • Boughton, A.J., Hoover, K. and Felton, G.W. (2005) Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J. Chem. Ecol. 31, 22112216.
  • Brown, G.D. (2010) The biosynthesis of Artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules, 15, 76037698.
  • Buchmann, S.L. (1987) The ecology of oil flowers and their bees. Ann. Rev. Ecol. Syst. 18, 343369.
  • Carpenter, K.J. (2006) Specialized structures in the leaf epidermis of basal angiosperms: morphology, distribution, and homology. Am. J. Bot. 93, 665681.
  • Chang, S.Y. and Grunwald, C. (1980) Structural organization of tobacco leaf polar cuticular lipids. Bot. Gaz. 141, 360365.
  • Chatzopoulou, F.M., Makris, A.M., Argiriou, A., Degenhardt, J. and Kanellis, A.K. (2010) EST analysis and annotation of transcripts derived from a trichome-specific cDNA library from Salvia fruticosa. Plant Cell Rep. 29, 523534.
  • Chauveau, O., Eggers, L., Raquin, C. et al. (2011) Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus. Ann. Bot. 107, 12871312.
  • Chen, C.B., Farmer, A.D., Langley, R.J., Mudge, J., Crow, J.A., May, G.D., Huntley, J., Smith, A.G. and Retzel, E.F. (2010a) Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol. 10, 280.
  • Chen, Y., Johnson, J., Macdonald, P., Wu, B. and Mueller, J.D. (2010b) Observing protein interactions and their stoichiometry in living cells by brightness analysis of fluorescence fluctuation experiments. In Methods in Enzymology, Vol. 472: Single Molecule Tools, Pt A: Fluorescence Based Approaches, Vol. 472 (Walter, N.G., ed.). San Diego, CA: Elsevier Academic Press Inc, pp. 345363.
  • Chen, J.L., Fang, H.M., Ji, Y.P. et al. (2011) Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the beta-caryophyllene synthase gene. Planta Med. 77, 17591765.
  • Choi, Y.E., Lim, S., Kim, H.-J., Han, J.Y., Lee, M.-H., Yang, Y., Kim, J.-A. and Kim, Y.-S. (2012) Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J. (Epub ahead of print).
  • Clark, I.M., Forde, B.G. and Hallahan, D.L. (1997) Spatially distinct expression of two new cytochrome P450s in leaves of Nepeta racemosa: identification of a trichome-specific isoform. Plant Mol. Biol. 33, 875885.
  • Covello, P.S. (2008) Making artemisinin. Phytochemistry, 69, 28812885.
  • Covello, P.S., Teoh, K.H., Polichuk, D.R., Reed, D.W. and Nowak, G. (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry, 68, 18641871.
  • Croteau, R. and Winters, J.N. (1982) Demonstration of the intercellular compartmentation of l-menthone metabolism in peppermint (Mentha piperita) leaves. Plant Physiol. 69, 975977.
  • Croteau, R.B., Davis, E.M., Ringer, K.L. and Wildung, M.R. (2005) (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften, 92, 562577.
  • Cui, H., Ji, H., Zhang, H. and Chen, L. (2006) Construction of full-length cDNA library from trichomes of Nicotiana tabacum. J. Xiamen Univ. 45, 859862.
  • Dai, X.B., Wang, G.D., Yang, D.S., Tang, Y.H., Broun, P., Marks, M.D., Sumner, L.W., Dixon, R.A. and Zhao, P.X. (2010) TrichOME: a comparative omics database for plant trichomes. Plant Physiol. 152, 4454.
  • Dan, Y., Yan, H., Munyikwa, T., Dong, J., Zhang, Y. and Armstrong, C. (2006) MicroTom – a high-throughput model transformation system for functional genomics. Plant Cell Rep. 25, 432441.
  • van Der Hoeven, R.S., Monforte, A.J., Breeden, D., Tanksley, S.D. and Steffens, J.C. (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell, 12, 22832294.
  • Digiuni, S., Schellmann, S., Geier, F. et al. (2008) A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. Mol. Syst. Biol. 4, 217.
  • Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W. and Gershenzon, J. (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. USA, 102, 933938.
  • Ennajdaoui, H., Vachon, G., Giacalone, C., Besse, I., Sallaud, C., Herzog, M. and Tissier, A. (2010) Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol. Biol. 73, 673685.
  • Fahn, A. (1988) Secretory tissues in vascular plants. New Phytol. 108, 229257.
  • Fahn, A. (2002) Functions and location of secretory tissues in plants and their possible evolutionary trends. Isr. J. Plant Sci. 50, S59S64.
  • Fahn, A. and Shimony, C. (1977) Development of glandular and non-glandular leaf hairs of Aviceniiia marnia (Forskal) Vierh. Bot. J. Linn. Soc. 74, 3746.
  • Falara, V., Fotopoulos, V., Margaritis, T., Anastasaki, T., Pateraki, I., Bosabalidis, A.M., Kafetzopoulos, D., Demetzos, C., Pichersky, E. and Kanellis, A.K. (2008) Transcriptome analysis approaches for the isolation of trichome-specific genes from the medicinal plant Cistus creticus subsp. creticus. Plant Mol. Biol. 68, 633651.
  • Falara, V., Akhtar, T.A., Nguyen, T.T.H. et al. (2011) The tomato terpene synthase gene family. Plant Physiol. 157, 770789.
  • Fei, Z., Tang, X., Alba, R.M., White, J.A., Ronning, C.M., Martin, G.B., Tanksley, S.D. and Giovannoni, J.J. (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 40, 4759.
  • Feldberg, L., Venger, I., Malitsky, S., Rogachev, I. and Aharoni, A. (2009) Dual labeling of metabolites for metabolome analysis (DLEMMA): a new approach for the identification and relative quantification of metabolites by means of dual isotope labeling and liquid chromatography-mass spectrometry. Anal. Chem. 81, 92579266.
  • Feng, L.L., Yang, R.Y., Yang, X.Q., Zeng, X.M., Lu, W.J. and Zeng, Q.P. (2009) Synergistic re-channeling of mevalonate pathway for enhanced artemisinin production in transgenic Artemisia annua. Plant Sci. 177, 5767.
  • Fernald, M.L. (1950) Gray’s Manual of Botany, 8th edn. New York: American Book Co., lxiv: 1632 pp.
  • Fobes, J.F., Mudd, J.B. and Marsden, M.P.F. (1985) Epicuticular lipid accumulation on the leaves of Lycopersicon pennellii (Corr.) D’Arcy and Lycopersicon esculentum Mill. Plant Physiol. 77, 567570.
  • Fridman, E., Wang, J.H., Iijima, Y., Froehlich, J.E., Gang, D.R., Ohlrogge, J. and Pichersky, E. (2005) Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell, 17, 12521267.
  • Frija, L.S.M.T., Frade, R.F.M. and Afonso, C.A.M. (2011) Isolation, chemical, and biotransformation routes of Labdane-type diterpenes. Chem. Rev. 111, 44184452.
  • Fuchs, B., Schiller, J., Suess, R., Zscharnack, M., Bader, A., Mueller, P., Schuerenberg, M., Becker, M. and Suckau, D. (2008) Analysis of stem cell lipids by offline HPTLC-MALDI-TOF MS. Anal. Bioanal. Chem. 392, 849860.
  • Gady, A.L.F., Hermans, F.W.K., Van de Wal, M., van Loo, E.N., Visser, R.G.F. and Bachem, C.W.B. (2009) Implementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods, 5, 13.
  • Gang, D.R., Wang, J., Dudareva, N., Nam, K.H., Simon, J.E., Lewinsohn, E. and Pichersky, E. (2001) An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiol. 125, 539555.
  • Gang, D., Beuerle, T., Ullmann, P., Werck-Reichhart, D. and Pichersky, E. (2002a) Differential production of meta hydroxylated phenylpropanoids in sweet basil peltate glangular trichomes and leaves is controlled by the activities of specific acyltransferase and hydeoxylases. Plant Physiol. 130, 15361544.
  • Gang, D.R., Lavid, N., Zubieta, C., Chen, F., Beuerle, T., Lewinsohn, E., Noel, J.P. and Pichersky, E. (2002b) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell, 14, 505519.
  • Gershenzon, J., Duffy, M.A., Karp, F. and Croteau, R. (1987) Mechanized techniques for the selective extraction of enzymes from plant epidermal glands. Anal. Biochem. 163, 159164.
  • Gershenzon, J., Maffei, M. and Croteau, R. (1989) Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol. 89, 13511357.
  • Gershenzon, J., McCaskill, D., Rajaonarivony, J.I., Mihaliak, C., Karp, F. and Croteau, R. (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal. Biochem. 200, 130138.
  • Giavalisco, P., Li, Y., Matthes, A., Eckhardt, A., Hubberten, H.M., Hesse, H., Segu, S., Hummel, J., Kohl, K. and Willmitzer, L. (2011) Elemental formula annotation of polar and lipophilic metabolites using (13)C, (15)N and (34)S isotope labelling, in combination with high- resolution mass spectrometry. Plant J. 68, 364376.
  • Gibson, D.G., Glass, J.I., Lartigue, C. et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329, 5256.
  • Gopfert, J., Conrad, J. and Spring, O. (2006) 5-deoxynevadensin, a novel flavone in sunflower and aspects of biosynthesis during trichome development. Nat. Prod. Commun. 1, 935940.
  • Graham, I.A., Besser, K., Blumer, S. et al. (2010) The genetic map of Artemisia annua L. Identifies loci affecting yield of the antimalarial drug artemisinin. Science, 327, 328331.
  • Hallahan, D.L., West, J.M., Smiley, D.W.M. and Pickett, J.A. (1998) Nepetalactol oxidoreductase in trichomes of the catmint Nepeta racemosa. Phytochemistry, 48, 421427.
  • Han, J.L., Liu, B.Y., Ye, H.C., Wang, H., Li, Z.Q. and Li, G.F. (2006) Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J. Integr. Plant Biol. 48, 482487.
  • Harada, E., Kim, J.A., Meyer, A.J., Hell, R., Clemens, S. and Choi, Y.E. (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol. 51, 16271637.
  • Iijima, Y., Davidovich-Rikanati, R., Fridman, E., Gang, D.R., Bar, E., Lewinsohn, E. and Pichersky, E. (2004a) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol. 136, 37243736.
  • Iijima, Y., Gang, D.R., Fridman, E., Lewinsohn, E. and Pichersky, E. (2004b) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 134, 370379.
  • Johnson, H.B. (1975) Plant pubescence: an ecological perspective. Bot. Rev. 41, 233258.
  • Kandra, L. and Wagner, G.J. (1988) Studies of the site and mode of biosynthesis of tobacco trichome exudate components. Arch. Biochem. Biophys. 265, 425432.
  • Kandra, L., Severson, R. and Wagner, G.J. (1990) Modified branched-chain amino-acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes. Eur. J. Biochem. 188, 385391.
  • Kapteyn, J., Qualley, A.V., Xie, Z.Z., Fridman, E., Dudareva, N. and Gang, D.R. (2007) Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell, 19, 32123229.
  • Kasahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya, Y. and Yamaguchi, S. (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J. Biol. Chem. 277, 4518845194.
  • Keene, C.K. and Wagner, G.J. (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol. 79, 10261032.
  • Kim, S.H., Chang, Y.J. and Kim, S.U. (2008) Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana. Planta Med. 74, 188193.
  • Koeduka, T., Fridman, E., Gang, D.R. et al. (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA, 103, 1012810133.
  • Krings, M. and Kerp, H. (1998) Epidermal anatomy of Barthelopteris germarii from the upper carboniferous and lower Permian of France and Germany. Am. J. Bot. 85, 553562.
  • Krings, M., Taylor, T.N. and Kellogg, D.W. (2002) Touch-sensitive glandular trichomes: a mode of defence against herbivorous arthropods in the Carboniferous. Evol. Ecol. Res. 4, 779786.
  • Krings, M., Kellogg, D.W., Kerp, H. and Taylor, T.N. (2003) Trichomes of the seed fern Blanzyopteris praedentata: implications for plant–insect interactions in the late Carboniferous. Bot. J. Linn. Soc. 141, 133149.
  • Lange, B.M., Wildung, M.R., Stauber, E.J., Sanchez, C., Pouchnik, D. and Croteau, R. (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc. Natl. Acad. Sci. USA, 97, 29342939.
  • Li, L., Zhao, Y.F., McCaig, B.C., Wingerd, B.A., Wang, J.H., Whalon, M.E., Pichersky, E. and Howe, G.A. (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell, 16, 126143.
  • Liu, B.Y., Wang, H., Du, Z.G., Li, G.F. and Ye, H.C. (2011) Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Plant Cell Rep. 30, 689694.
  • Luckwill, L.C. (1943) The Genus Lycopersicon: A Historical, Biological, and Taxonomic Survey of the Wild and Cultivated Tomatoes. Aberdeen, UK: Aberdeen University Press.
  • Ma, D.M., Pu, G.B., Lei, C.Y. et al. (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the Amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol. 50, 21462161.
  • Mahmoud, S.S. and Croteau, R.B. (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. USA, 98, 89158920.
  • Maluf, W.M., Inoue, I.F., Ferreira, R. D. P.D., Gomes, L.A.A., de Castro, E.M. and Cardoso, M. D. G. (2007) Higher glandular trichome density in tomato leaflets and repellence to spider mites. Pesqu. Agropecu. Bras. 42, 12271235.
  • Marks, M.D., Tian, L., Wenger, J.P., Omburo, S.N., Soto-Fuentes, W., He, J., Gang, D.R., Weiblen, G.D. and Dixon, R.A. (2009) Identification of candidate genes affecting delta(9)-tetrahydrocannabinol biosynthesis in Cannabis sativa. J. Exp. Bot. 60, 37153726.
  • Martin, C. and Glover, B.J. (2007) Functional aspects of cell patterning in aerial epidermis. Curr. Opin. Plant Biol. 10, 7082.
  • Matas, A.J., Agusti, J., Tadeo, F.R., Talon, M. and Rose, J.K.C. (2010) Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. J. Exp. Bot. 61, 33213330.
  • McConkey, M.E., Gershenzon, J. and Croteau, R.B. (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol. 122, 215224.
  • McDowell, E.T., Kapteyn, J., Schmidt, A. et al. (2011) Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol. 155, 524539.
  • Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y. and Levy, A. (1997) A new model system for tomato genetics. Plant J. 12, 14651472.
  • Meissner, R., Chague, V., Zhu, Q.H., Emmanuel, E., Elkind, Y. and Levy, A.A. (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J. 22, 265274.
  • Michie, M.J. and Reid, W.W. (1968) Biosynthesis of complex terpenes in leaf cuticle and trichomes of Nicotiana tabacum. Nature, 218, 578.
  • Moulines, J., Lamidey, A.M. and Desvergnes-Breuil, V. (2001) A practical synthesis of Ambrox (R) from sclareol using no metallic oxidant. Synth. Commun. 31, 749758.
  • Moulines, J., Bats, J.P., Lamidey, A.M. and Da Silva, N. (2004) About a practical synthesis of Ambrox (R) from sclareol: a new preparation of a ketone key intermediate and a close look at its Baeyer–Villiger oxidation. Helv. Chim. Acta, 87, 26952705.
  • Nafis, T., Akmal, M., Ram, M., Alam, P., Ahlawat, S., Mohd, A. and Abdin, M.Z. (2011) Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnol. Rep. 5, 5360.
  • Nagel, J., Culley, L.K., Lu, Y.P., Liu, E.W., Matthews, P.D., Stevens, J.F. and Page, J.E. (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell, 20, 186200.
  • Napp-Zinn, K. (1966) Anatomie des Blattes. I. Blattanatomie der Gymnospermen. In Handbuch der Pflanzenanotomie, Bd 8, Teil 1 (Zimmermann, W., Ozenda, P. and Wulff, H.D., eds). Berlin: Bomtraeger, pp. 1370.
  • Naqvi, S., Farre, G., Sanahuja, G., Capell, T., Zhu, C.F. and Christou, P. (2010) When more is better: multigene engineering in plants. Trends Plant Sci. 15, 4856.
  • Oikawa, A., Matsuda, F., Kikuyama, M., Mimura, T. and Saito, K. (2011) Metabolomics of a single vacuole reveals metabolic dynamism in an Alga Chara australis. Plant Physiol. 157, 544551.
  • Okabe, Y., Asamizu, E., Saito, T., Matsukura, C., Ariizumi, T., Brès, C., Rothan, C., Mizoguchi, T. and Ezura, H. (2011) Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from micro-tom mutant libraries. Plant Cell Phys. 52, 19942005.
  • Olsson, M.E., Olofsson, L.M., Lindahl, A.L., Lundgren, A., Brodelius, M. and Brodelius, P.E. (2009) Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry, 70, 11231128.
  • Olofsson, L., Lundgren, A. and Brodelius, P.E. (2012) Trichome isolation with and without fixation using laser microdissection and pressure catapulting followed by RNA amplification: Expression of genes of terpene metabolism in apical and sub-apical trichome cells of Artemisia annua L. Plant Sci. 183, 913.
  • Pateraki, I. and Kanellis, A.K. (2010) Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp creticus. Plant Cell Rep. 29, 629641.
  • Payne, W. (1978) A glossary of plant hair terminology. Brittonia, 30, 239255.
  • Pesch, M. and Hulskamp, M. (2009) One, two, three... models for trichome patterning in Arabidopsis? Curr. Opin. Plant Biol. 12, 587592.
  • Phillips, M.A., Leon, P., Boronat, A. and Rodriguez-Concepcion, M. (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci. 13, 619623.
  • Piron, F., Nicolai, M., Minoia, S., Piednoir, E., Moretti, A., Salgues, A., Zamir, D., Caranta, C. and Bendahmane, A. (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS ONE, 5, 110.
  • Ranger, C.M., Winter, R.E.K., Rottinghaus, G.E., Backus, E.A., Ellersieck, M.R. and Johnson, D.W. (2004) Bioactivity of lipophilic metabolites from glandular trichomes of Medicago sativa against the potato leafhopper. J. Chem. Ecol. 30, 19691983.
  • Rios-Estepa, R., Turner, G.W., Lee, J.M., Croteau, R.B. and Lange, B.M. (2008) A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint. Proc. Natl. Acad. Sci. USA, 105, 28182823.
  • Rios-Estepa, R., Lange, I., Lee, J.M. and Lange, B.M. (2010) Mathematical modeling-guided evaluation of biochemical, developmental, environmental, and genotypic determinants of essential oil composition and yield in peppermint leaves. Plant Physiol. 152, 21052119.
  • Saito, T., Ariizumi, T., Okabe, Y., Asamizu, E., Hiwasa-Tanase, K., Fukuda, N., Mizoguchi, T., Yamazaki, Y., Aoki, K. and Ezura, H. (2011) TOMATOMA: a novel tomato mutant database distributing micro-tom mutant collections. Plant Cell Phys. 52, 283296.
  • Sallaud, C., Rontein, D., Onillon, S. et al. (2009) A novel pathway for sesquiterpene biosynthesis from Z,Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell, 21, 301317.
  • Samuels, L., Kunst, L. and Jetter, R. (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 59, 683707, Palo Alto: Annual Reviews.
  • Schiebold, S., Tschiersch, H., Borisjuk, L., Heinzel, N., Radchuk, R. and Rolletschek, H. (2011) A novel procedure for the quantitative analysis of metabolites, storage products and transcripts of laser microdissected seed tissues of Brassica napus. Plant Methods, 7, 19.
  • Schilmiller, A.L., Last, R.L. and Pichersky, E. (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J. 54, 702711.
  • Schilmiller, A.L., Schauvinhold, I., Larson, M., Xu, R., Charbonneau, A.L., Schmidt, A., Wilkerson, C., Last, R.L. and Pichersky, E. (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Natl. Acad. Sci. USA, 106, 1086510870.
  • Schilmiller, A., Shi, F., Kim, J., Charbonneau, A.L., Holmes, D., Jones, A.D. and Last, R.L. (2010a) Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J. 62, 391403.
  • Schilmiller, A.L., Miner, D.P., Larson, M., McDowell, E., Gang, D.R., Wilkerson, C. and Last, R.L. (2010b) Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiol. 153, 12121223.
  • Schmidt, A., Li, C., Shi, F., Jones, A.D. and Pichersky, E. (2011) Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′- and 7/4′-myricetin O-methyltransferases. Plant Physiol. 155, 19992009.
  • Serna, L. and Martin, C. (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci. 11, 274280.
  • Shanks, G.D. (2006) Treatment of falciparum malaria in the age of drug resistance. J. Postgrad. Med. 52, 277280.
  • Simmons, A.T. and Gurr, G.M. (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric. For. Entomol. 7, 265276.
  • Sirikantaramas, S., Taura, F., Tanaka, Y., Ishikawa, Y., Morimoto, S. and Shoyama, Y. (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Phys. 46, 15781582.
  • Slocombe, S.P., Schauvinhold, I., McQuinn, R.P. et al. (2008) Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiol. 148, 18301846.
  • Sozzani, R., Cui, H., Moreno-Risueno, M.A., Busch, W., Van Norman, J.M., Vernoux, T., Brady, S.M., Dewitte, W., Murray, J.A.H. and Benfey, P.N. (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature, 466, 128132.
  • Sreelakshmi, Y., Gupta, S., Bodanapu, R., Chauhan, V.S., Hanjabam, M., Thomas, S., Mohan, V., Sharma, S., Srinivasan, R. and Sharma, R. (2010) NEATTILL: a simplified procedure for nucleic acid extraction from arrayed tissue for TILLING and other high-throughput reverse genetic applications. Plant Methods, 6, 3.
  • Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D. and Boutry, M. (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol. 139, 341352.
  • Teoh, K.H., Polichuk, D.R., Reed, D.W., Nowak, G. and Covello, P.S. (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580, 14111416.
  • Teoh, K.H., Polichuk, D.R., Reed, D.W. and Covello, P.S. (2009) Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany, 87, 635642.
  • Thaler, J.S., Farag, M.A., Pare, P.W. and Dicke, M. (2002) Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecol. Lett. 5, 764774.
  • Tissier, A. (2012) Trichome specific expression: promoters and their applications. In Transgenic Plants - Advances and Limitations (Çiftçi, Y.O., ed.). Rijeka: InTech, pp. 353378.
  • Turner, G.W. and Croteau, R. (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol. 136, 42154227.
  • Turner, G., Gershenzon, J., Nielson, E.E., Froehlich, J.E. and Croteau, R. (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol. 120, 879886.
  • Turner, G.W., Gershenzon, J. and Croteau, R.B. (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol. 124, 665680.
  • Uphof, J.C.T. (1962) Plant hairs. In Handbuch der Pflanzenanatomie, Bd. 4, Teil 5 (Finsbauer, K., ed.). Berlin: Borntraeger, pp. 1292.
  • Van Cutsem, E., Simonart, G., Degand, H., Faber, A.M., Morsomme, P. and Boutry, M. (2011) Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response. Proteomics, 11, 440454.
  • Vassao, D.G., Gang, D.R., Koeduka, T., Jackson, B., Pichersky, E., Davin, L.B. and Lewis, N.G. (2006) Chavicol formation in sweet basil (Ocimum basilicum): cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org. Biomol. Chem. 4, 27332744.
  • Vining, K.J., Zhang, Q., Tucker, A.O., Smith, C. and Davis, T.M. (2005) Mentha longifolia (L.) L.: a model species for mint genetic research. HortScience, 40, 12251229.
  • Wagner, G.J., Wang, E. and Shepherd, R.W. (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 93, 311.
  • Wang, E.M., Gan, S.S. and Wagner, G.J. (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J. Exp. Bot. 53, 18911897.
  • Wang, H., Liu, Y., Chong, K., Liu, B.Y., Ye, H.C., Li, Z.Q., Yan, F. and Li, G.F. (2007) Earlier flowering induced by over-expression of CO gene does not accompany increase of artemisinin biosynthesis in Artemisia annua. Plant Biol. 9, 442446.
  • Wang, G., Tian, L., Aziz, N., Broun, P., Dai, X., He, J., King, A., Zhao, P.X. and Dixon, R.A. (2008) Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 148, 12541266.
  • Wang, W., Wang, Y.J., Zhang, Q., Qi, Y. and Guo, D.J. (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics, 10, 465.
  • Wang, H., Olofsson, L., Lundgren, A. and Brodelius, P.E. (2011) Studies on the expression of enzymes of artemisinin biosynthesis using promoter-GUS fusions in transgenic Artemisia annua plants. In Terpnet 2011 (Brodelius, P.E., ed.). Kalmar, Sweden: School of Natural Sciences Linnaeus University, pp. 58.
  • Weathers, P.J., Arsenault, P.R., Covello, P.S., McMickle, A., Teoh, K.H. and Reed, D.W. (2011) Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem. Rev. 10, 173183.
  • Werker, E. (2000) Trichome diversity and development. In Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol. 31: Plant Trichomes (Hallahan, D.L. and Gray, J.C., eds). San Diego/Boston/London: Academic Press, pp. 135.
  • Wollenweber, E. and Schneider, H. (2000) Lipophilic exudates of Pteridaceae – chemistry and chemotaxonomy. Biochem. Syst. Ecol. 28, 751777.
  • Wollenweber, E., Stevens, J.F., Ivanic, M. and Deinzer, M.L. (1998) Acylphloroglucinols and flavonoid aglycones produced by external glands on the leaves of two Dryopteris ferns and Currania robertiana. Phytochemistry, 48, 931949.
  • Xie, Z., Kapteyn, J. and Gang, D.R. (2008) A systems biology investigation of the MEP/terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. Plant J. 54, 349361.
  • Yamaura, T., Tanaka, S. and Tabata, M. (1992) Localization of the biosynthesis and accumulation of monoterpenoids in glandular trichomes of thyme. Planta Med. 58, 153158.
  • Yang, R.Y., Feng, L.L., Yang, X.Q., Yin, L.L., Xu, X.L. and Zeng, Q.P. (2008) Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med. 74, 15101516.
  • Yerger, E.H., Grazzini, R.A., Hesk, D., Coxfoster, D.L., Craig, R. and Mumma, R.O. (1992) A rapid method for isolating glandular trichomes. Plant Physiol. 99, 17.
  • Young, J.D., Shastri, A.A., Stephanopoulos, G. and Morgan, J.A. (2011) Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab. Eng. 13, 656665.
  • Yu, G., Nguyen, T.T.H., Guo, Y. et al. (2010) Enzymatic functions of wild tomato methylketone synthases 1 and 2. Plant Physiol. 154, 6777.
  • Zhang, L., Jing, F.Y., Li, F.P., Li, M.Y., Wang, Y.L., Wang, G.F., Sun, X.F. and Tang, K.X. (2009a) Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol. Appl. Biochem. 52, 199207.
  • Zhang, Y.S., Teoh, K.H., Reed, D.W. and Covello, P.S. (2009b) Molecular cloning and characterization of Dbr1, a 2-alkenal reductase from Artemisia annua. Botany, 87, 643649.