SEARCH

SEARCH BY CITATION

References

  • Alkan, C., Sajjadian, S. and Eichler, E.E. (2011) Limitations of next-generation genome sequence assembly. Nat. Methods, 8, 6165.
  • Allard, R.W. (1960) Principles of Plant Breeding. New York: John Wiley & Sons Inc.
  • Alverson, A.J., Rice, D.W., Dickinson, S., Barry, K. and Palmer, J.D. (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell, 23, 24992513.
  • Anderson, L.K., Covey, P.A., Larsen, L.R., Bedinger, P. and Stack, S.M. (2010) Structural differences in chromosomes distinguish species in the tomato clade. Cytogenet Genome Res. 129, 2434.
  • Badaeva, E.D., Dedkova, O.S., Gay, G., Pukhalskyi, V.A., Zelenin, A.V., Bernard, S. and Bernard, M. (2007) Chromosomal rearrangements in wheat: their types and distribution. Genome, 50, 907926.
  • Bisht, I.S., Bhat, K.V., Tanwar, S.P.S., Bhandari, D.C., Joshi, K. and Sharma, A.K. (2004) Distribution and genetic diversity of Cucumis sativus var. hardwickii (Royle) Alef in India. J. Hortic. Sci. Biotechnol. 79, 783791.
  • Candolle, A.D. (1959) Origin of Cultivated Plants. New York: Hafner Publishing Co.
  • Cavagnaro, P.F., Senalik, D.A., Yang, L., Simon, P.W., Harkins, T.T., Kodira, C.D., Huang, S. and Weng, Y. (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 11, 569.
  • Cheng, Z., Presting, G.G., Buell, C.R., Wing, R.A. and Jiang, J. (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics, 157, 17491757.
  • Clement, C.R. (1999) 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53, 188202.
  • Danin-Poleg, Y., Reis, N., Baudracco-Arnas, S., Pitrat, M., Staub, J.E., Oliver, M., Arus, P., deVicente, C.M. and Katzir, N. (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome, 43, 96374.
  • Deakin, J.R., Bohn, G.W. and Whitaker, T.W. (1971) Interspecific hybridization in Cucumis. Econ. Bot. 25, 195201.
  • Dijkhuizen, A., Kennard, W.C., Havey, M.J. and Staub, J.E. (1996) RFLP variation and genetic relationships in cultivated cucumber. Euphytica, 90, 7987.
  • Duthie, J.F. (1903) Flora of the Upper Gangetic Plain, and of the Adjacent Siwalik and Sub-Himalayan Tracts. Calcutta, India: Superintendent of Government Printing Publication.
  • Fanourakis, N.E. (1984) Inheritance and linkage studies of the fruit epidermis structure, and investigation of linkage relationships of several traits and of meiosis in cucumber. PhD Thesis, University of Wisconsin, Madison, WI.
  • Fazio, G., Staub, J.E. and Stevens, M.R. (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor. Appl. Genet. 107, 864874.
  • Findley, S.D., Cannon, S., Varala, K., Du, J.C., Ma, J.X., Hudson, M.E., Birchler, J.A. and Stacey, G. (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics, 185, 727744.
  • Ganal, M. and Hemleben, V. (1988) Insertion and amplification of a DNA sequence in satellite DNA of Cucumis sativus L. (cucumber). Theor. Appl. Genet. 75, 357361.
  • Ganal, M., Riede, I. and Hemleben, V. (1986) Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). J. Mol. Evol. 23, 2330.
  • Gao, D.Y., Gill, N., Kim, H.R. et al. (2009) A lineage-specific centromere retrotransposon in Oryza brachyantha. Plant J. 60, 820831.
  • Garrido- Ramos, M.A., Jamilena, M., De la Herran, R., Rejon, R., Camacho, J.M. and Rejon, M.R. (1998) Inheritance and fitness effects of a pericentric inversion and a supernumerary chromosome segment in Muscari comosum (Liliaceae). Heredity, 80, 724731.
  • Giraut, L., Falque, M., Drouaud, J., Pereira, L., Martin, O.C. and Mezard, C. (2011) Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet. 7, e1002354.
  • Gonzalo, M.J., Oliver, M., Garcia-Mas, J., Monfort, A., Dolcet-Sanjuan, R., Katzir, N., Arus, P. and Monforte, A.J. (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor. Appl. Genet. 110, 802811.
  • Han, Y.H., Zhang, Z.H., Liu, J.H., Lu, J.Y., Huang, S.W. and Jin, W.W. (2008) Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet. Genome Res., 122, 8088.
  • Han, Y., Zhang, Z., Liu, C., Liu, J., Huang, S., Jiang, J. and Jin, W. (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc. Natl Acad. Sci. USA, 106, 1493741.
  • Hancock, J.F. (2005) Contributions of domesticated plant studies to our understanding of plant evolution. Ann. Bot. 96, 953963.
  • Harlan, J.R. (1992) Crops & Man, 2nd edn. Madison, WI: American Society of Agronomy/Crop Science Society of America.
  • Havey, M.J. (1997) Predominant paternal transmission of the mitochondrial genome in cucumber. J. Hered. 88, 232235.
  • Hoffmann, A.A. and Rieseberg, L.H. (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst., 39, 2142.
  • Huang, S., Li, R., Zhang, Z. et al. (2009) The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 12751281.
  • Iovene, M., Wielgus, S.M., Simon, P.W., Buell, C.R. and Jiang, J.M. (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics, 180, 13071317.
  • Iovene, M., Cavagnaro, P.F., Senalik, D., Buell, C.R., Jiang, J.M. and Simon, P.W. (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res. 19, 493506.
  • Jeffrey, C. (2001) Cucurbitaceae. In Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops (Hanelt, P., ed). Berlin: Springer-Verlag, pp. 15101557.
  • Jiang, J. and Gill, B.S. (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. genome, 49, 10571068.
  • Jiang, L., Zhang, W.L., Xia, Z.H., Jiang, G.H., Qian, Q., Li, A.L., Cheng, Z.K., Zhu, L.H., Mao, L. and Zhai, W.X. (2007) A paracentric inversion suppresses genetic recombination at the FON3 locus with breakpoints corresponding to sequence gaps on rice chromosome 11L. Mol. Genet. Genomics, 277, 263272.
  • Keng, H. (1974) Economic plants of ancient North-China as mentioned in Shih-Ching (Book of Poetry). Econ. Bot. 28, 391410.
  • Kennard, W.C., Poetter, K., Dijkhuizen, A., Meglic, V., Staub, J.E. and Havey, M.J. (1994) Linkages among RFLP, RAPD, isozyme, disease resistance, and morphological markers in narrow and wide crosses of cucumber. Theor. Appl. Genet. 89, 4248.
  • King, J., Roberts, L.A., Kearsey, M.J., Thomas, H.M., Jones, R.N., Huang, L., Armstead, I.P., Morgan, W.G. and King, I.P. (2002) A demonstration of a 1 to 1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution. Genetics, 161, 307314.
  • Kirkbride, J.H. (1993) Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae): Botanical Identification of Cucumbers and Melons. Boone, NC: Parkway Publishers.
  • Kirkpatrick, M. (2010) How and why chromosome inversions evolve. PLoS Biol. 8, e1000501.
  • Knerr, L.D., Staub, J.E., Holder, D.J. and May, B.P. (1989) Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theor. Appl. Genet. 78, 119128.
  • Kocsis, E., Trus, B.L., Steer, C.J., Bisher, M.E. and Steven, A.C. (1991) Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J. Struct. Biol. 107, 614.
  • Koo, D.H., Choi, H.W., Cho, J., Hur, Y. and Bang, J.W. (2005) A high-resolution karyotype of cucumber (Cucumis sativus L ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome, 48, 534540.
  • Koo, D.H., Nam, Y.W., Choi, D., Bang, J.W., de Jong, H. and Hur, Y. (2010) Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res. 18, 325336.
  • Li, D., Cuevas, H.E., Yang, L. et al. (2011a) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics, 12, 396.
  • Li, Y., Yang, L., Pathak, M., Li, D., He, X. and Weng, Y. (2011b) Fine genetic mapping of cp, a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor. Appl. Genet. 123, 973983.
  • Lough, T.J. and Lucas, W.J. (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57, 203232.
  • Lowry, D.B. and Willis, J.H. (2010) A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 8, e1000500.
  • Meader, S., Hillier, L.W., Locke, D., Ponting, C.P. and Lunter, G. (2010) Genome assembly quality, assessment and improvement using the neutral indel model. Genome Res., 20, 675684.
  • Meglic, V., Serquen, F. and Staub, J.E. (1996) Genetic diversity in cucumber. 1. A reevaluation of the US germplasm collection. Genet. Resour. Crop Evol. 43, 533546.
  • Meyer, J.D., Deleu, W., Garcia-Mas, J. and Havey, M.J. (2008) Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (Cucumis melo). Mol. Genet. Genomics, 279, 473480.
  • Miao, H., Zhang, S.P., Wang, X.W. et al. (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 182, 167176.
  • Mliki, A., Staub, J.E., Sun, Z.Y. and Ghorbel, A. (2003) Genetic diversity in African cucumber (Cucumis sativus L.) provides potential for germplasm enhancement. Genet. Resour. Crop Evol. 50, 461468.
  • Murry, M.G. and Thompson, M.F. (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res. 8, 43214325.
  • Naudin, C. (1859) Espèces et des variétés du genre Cucumis. Ann. Sci. Nat. Bot., 6, 587.
  • van Ooijen, J.W. and Voorrips, R.E. (2001) Joinmap 3.0: Software for the Calculation of Genetic Linkage Maps. Wageningen, The Netherlands: Plant Research International.
  • Paris, H.S., Daunay, M.C. and Janick, J. (2012) Occidental diffusion of cucumber (Cucumis sativus) 500-1300 CE,two routes to Europe. Ann. Bot. 109, 117126.
  • Pickersgill, B. (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann. Bot. 100, 925940.
  • Ramachandran, C. and Seshadri, V.S. (1986) Cytological analysis of the genome of cucumber (Cucumis sativus L) and muskmelon (Cucumis melo L). Plant Breed., 96, 2538.
  • Ren, Y., Zhang, Z., Liu, J. et al. (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE, 4, e5795.
  • Robbins, M.D., Casler, M.D. and Staub, J.E. (2008) Pyramiding QTL for multiple lateral branching in cucumber using inbred backcross lines. Mol Breed. 22, 131139.
  • Royle, J.F. (1835) Illustrations of the Botany of the Himalayan Mountains. London: Wm. H. Alland & Co.
  • Schatz, M.C., Delcher, A.L. and Salzberg, S.L. (2010) Assembly of large genomes using second-generation sequencing. Genome Res. 20, 11651173.
  • Sebastian, P., Schaefer, H., Telford, I.R.H. and Renner, S.S. (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc. Natl Acad. Sci. USA, 107, 1426914273.
  • Singh, R.J. and Hymowitz, T. (1988) The genomic relationship between Glycine max (L) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor. Appl. Genet. 76, 705711.
  • Staub, J.E., Serquen, F.C. and McCreight, J.D. (1997) Genetic diversity in cucumber (Cucumis sativus L). 3. An evaluation of Indian germplasm. Genet. Resour. Crop Evol. 44, 315326.
  • Staub, J.E., Serquen, F.C., Horejsi, T. and Chen, J.F. (1999) Genetic diversity in cucumber (Cucumis sativus L.), IV. An evaluation of Chinese germplasm. Genet. Resour. Crop Evol. 46, 297310.
  • Szinay, D., Chang, S.B., Khrustaleva, L., Peters, S., Schijlen, E., Bai, Y.L., Stiekema, W.J., van Ham, R.C.H.J., de Jong, H. and Lankhorst, R.M.K. (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J. 56, 627637.
  • Tanksley, S.D. and McCouch, S.R. (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277, 10631066.
  • Tanurdzic, M. and Banks, J.A. (2004) Sex-determining mechanisms in land plants. Plant Cell, 16(Suppl.), S61S71.
  • Treangen, T.J. and Salzberg, S.L. (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 3646.
  • Wang, D.H., Li, F., Duan, Q.H., Han, T., Xu, Z.H. and Bai, S.N. (2010) Ethylene perception is involved in female cucumber flower development. Plant J. 61, 862872.
  • Weng, Y., Li, W., Devkota, R.N. and Rudd, J.C. (2005) Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor. Appl. Genet. 110, 462469.
  • Weng, Y., Johnson, S., Staub, J.E. and Huang, S.W. (2010) An extended intervarietal microsatellite linkage map of cucumber, Cucumis sativus L. HortSci. 45, 882886.
  • Whitaker, T.W. and Davis, G.N. (1962) Cucurbits. London/New York: Interscience Publishers.
  • de Wilde, W. J. J. and Duyfjes, B.E.E. (2010) Cucumis sativus L. forma hardwickii (Royle) W.J. de Wilde & Duyfjes and feral forma sativus. Thai. For. Bull. (Bot.) 38, 98107.
  • Woycicki, R., Witkowicz, J., Gawronski, P. et al. (2011) The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS ONE, 6, e22728.
  • Ye, L., Hillier, L.W., Minx, P. et al. (2011) A vertebrate case study of the quality of assemblies derived from next-generation sequences. Genome Biol. 12, R31.
  • Zeven, A.C. and de Wet, J.M.J. (1982) Dictionary of Cultivated Plants and their Regions of Diversity, excluding most Ornamentals, Forest Trees and Lower Plants, 2nd edn. Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation.
  • Zhang, B., Tolstikov, V., Turnbull, C., Hicks, L.M. and Fiehn, O. (2010a) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc. Natl Acad. Sci. USA, 107, 1353213537.
  • Zhang, S.P., Miao, H., Gu, X.F. et al. (2010b) Genetic mapping of the scab resistance gene in cucumber. J. Am. Soc. Hortic. Sci. 135, 5358.
  • Zhang, W.W., Pan, J.S., He, H.L. et al. (2011) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor. Appl. Genet. 124, 249259.