SEARCH

SEARCH BY CITATION

References

  • Andersen, S.U., Buechel, S., Zhao, Z., Ljung, K., Novák, O., Busch, W., Schuster, C. and Lohmann, J.U. (2008) Requirement of B2-type cyclin-dependent kinases for meristem integrity in Arabidopsis thaliana. Plant Cell, 20, 88100.
  • Barkawi, L.S., Tam, Y.Y., Tillman, J.A., Pederson, B., Calio, J., Al-Amier, H., Emerick, M., Normanly, J. and Cohen, J.D. (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal. Biochem.372, 177188.
  • Barlier, I., Kowalczyk, M., Marchant, A., Ljung, K., Bhalerao, R., Bennett, M., Sandberg, G. and Bellini, C. (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc. Natl Acad. Sci. USA, 97, 1481914824.
  • Benková, E., Ivanchenko, M.G., Friml, J., Shishkova, S. and Dubrovsky, J.G. (2009) A morphogenetic trigger: is there an emerging concept in plant developmental biology?Trends Plant Sci.14, 189193.
  • Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte, W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M. and Inzé, D. (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 7, 14051419.
  • Chen, K.-H., Miller, A.N., Patterson, G.W. and Cohen, J.D. (1988) A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol.86, 822825.
  • Edlund, A., Eklöf, S., Sundberg, B., Moritz, T. and Sandberg, G. (1995) A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol.108, 10431047.
  • Hirano, K., Nakajima, M., Asano, K. et al. (2007) The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell, 19, 30583079.
  • Ilić, N., Magnus, V., Ostin, A. and Sandberg, G. (1997) Stable-isotope labeled metabolites of the phytohormone, indole-3-acetic acid. J. Labelled Comp. Radiopharm.39, 433440.
  • Jones, S.E., DeMeo, J.S., Davies, N.W., Noonan, S.E. and Ross, J.J. (2005) Stems of the Arabidopsis pin1-1 mutant are not deficient in free indole-3-acetic acid. Planta, 222, 530534.
  • Kai, K., Horita, J., Wakasa, K. and Miyagawa, H. (2007) Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry, 68, 16511663.
  • Kataoka, H., Sumida, A., Nishihata, N. and Makita, M. (1995) Determination of aliphatic aldehydes as their thiazolidine derivatives in foods by gas chromatography with flame photometric detection. J. Chromatogr. A.709, 303311.
  • Kojima, M., Kamada-Nobusada, T., Komatsu, H. et al. (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography–tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol.50, 12011214.
  • Kowalczyk, M. (2002) Metabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. PhD thesis. Swedish University of Agricultural Sciences, Umeå, Sweden.
  • Kowalczyk, M. and Sandberg, G. (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol.127, 18451853.
  • Kriechbaumer, V., Wang, P., Hawes, C. and Abell, B.M. (2012) Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. Plant J.70, 292302.
  • Lehmann, T., Hoffmann, M., Hentrich, M. and Pollmann, S. (2010) Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production?Eur. J. Cell Biol.89, 895905.
  • Leyser, O. (2010) The power of auxin in plants. Plant Physiol.154, 501505.
  • Ljung, K., Hull, A.K., Kowalczyk, M., Marchant, A., Celenza, J., Cohen, J.D. and Sandberg, G. (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol. Biol.50, 309332.
  • Ludwig-Müller, J. (2007) Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions. J. Plant Physiol.164, 4759.
  • Ludwig-Müller, J., Vertocnik, A. and Town, C.D. (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J. Exp. Bot.56, 20952105.
  • Mashiguchi, K., Tanaka, K., Sakai, T. et al. (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl Acad. Sci. USA, 108, 1851218517.
  • Midttun, O., Hustad, S. and Ueland, P.M. (2009) Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom.23, 13711379.
  • Mikkelsen, M.D., Naur, P. and Halkier, B.A. (2004) Arabidopsis mutants in the C–S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J.37, 770777.
  • Miyake, T. and Shibamoto, T. (1993) Quantitative analysis of acetaldehyde in foods and beverages. J. Agric. Food Chem.41, 19681970.
  • Normanly, J. (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb. Perspect. Biol.2, a001594.
  • Novák, O., Hauserová, E., Amakorová, P., Doležal, K. and Strnad, M. (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 69, 22142224.
  • Östin, A., Kowalczyk, M., Bhalerao, R.P. and Sandberg, G. (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol.118, 285296.
  • Petersson, S.V., Johansson, A.I., Kowalczyk, K., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, P.N., Sandberg, G. and Ljung, K. (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell, 21, 16591668.
  • Petrášek, J. and Friml, J. (2009) Auxin transport routes in plant development. Development, 136, 26752688.
  • Quittenden, L.J., Davies, N.W., Smith, J.A., Molesworth, P.P., Tivendale, N.D. and Ross, J.J. (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol.151, 11301138.
  • Rittenberg, D. and Foster, L. (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem.133, 727744.
  • Sorefan, K., Girin, T., Liljegren, S.J., Ljung, K., Robles, P., Galván-Ampudia, C.S., Offringa, R., Friml, J., Yanofsky, M.F. and Østergaard, L. (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature, 459, 583586.
  • Stepanova, A.N., Yun, J., Robles, L.M., Novak, O., He, W., Guo, H., Ljung, K. and Alonso, J.M. (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell, 23, 39613973.
  • Strader, L.C. and Bartel, B. (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant.4, 477486.
  • Strader, L.C., Culler, A.H., Cohen, J.D. and Bartel, B. (2010) Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Plant Physiol.153, 15771586.
  • Strader, L.C., Wheeler, D.L., Christensen, S.E., Berens, J.C., Cohen, J.D., Rampey, R.A. and Bartel, B. (2011) Multiple facets of Arabidopsis seedling development require indole-3-butyric acid-derived auxin. Plant Cell, 23, 984999.
  • Sugawara, S., Hishiyama, S., Jikumaru, Y., Hanada, A., Nishimura, T., Koshiba, T., Zhao, Y., Kamiya, Y. and Kasahara, H. (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Natl Acad. Sci. USA, 106, 54305435.
  • Sundberg, B. (1990) Influence of extraction solvent (buffer, methanol, acetone) and time on the quantification of indole-3-acetic acid in plants. Physiol. Plant.78, 293297.
  • Tam, Y.Y. and Normanly, J. (1998) Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry. J. Chromatogr. A.800, 101108.
  • Tam, Y.Y., Epstein, E. and Normanly, J. (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol.123, 589596.
  • Turečková, V., Novák, O. and Strnad, M. (2009) Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta, 80, 390399.
  • Tzin, V. and Galili, G. (2010) The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. The Arabidopsis Book, 8, e0132.
  • van de Weert, M., Lagerwerf, F.M., Haverkamp, J. and Heerma, W. (1998) Mass spectrometric analysis of oxidized tryptophan. J. Mass Spectrom.33, 884891.
    Direct Link:
  • Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory, J. and Zhao, Y. (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl Acad. Sci. USA, 108, 1851818523.
  • Zentella, R., Zhang, Z.L., Park, M. et al. (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell19, 30373057.
  • Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D. and Chory, J. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 291, 306309.