SEARCH

SEARCH BY CITATION

References

  • Abd El-Mawla, A. and Beerhues, L. (2002) Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta, 214, 727733.
  • Agerbirk, N., De Vos, M., Kim, J. and Jander, G. (2009) Indole glucosinolate breakdown and its biological effects. Phytochem. Rev.8, 101120.
  • Albinsky, D., Sawada, Y., Kuwahara, A., Nagano, M., Hirai, A., Saito, K. and Hirai, M. (2010) Widely targeted metabolomics and coexpression analysis as tools to identify genes involved in the side-chain elongation steps of aliphatic glucosinolate biosynthesis. Amino Acids, 39, 10671075.
  • Bender, J. and Celenza, J. (2009) Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochem. Rev.8, 2537.
  • Beuerle, T. and Pichersky, E. (2002) Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal. Biochem.302, 305312.
  • Boatright, J., Negre, F., Chen, X., Kish, C., Wood, B., Peel, G., Orlova, I., Gang, D., Rhodes, D. and Dudareva, N. (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol.135, 19932011.
  • Bonawitz, ND, Soltau, WL, Blatchley, MR, Powers, BL, Hurlock, AK, Seals, LA, Weng, JK, Stout, J and Chapple, C. (2012) REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. J Biol Chem.287, 54345445.
  • Brown, P., Tokuhisa, J., Reichelt, M. and Gershenzon, J. (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62, 471481.
  • Clough, S. and Bent, A. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.16, 735743.
  • D’Auria, J., Chen, F. and Pichersky, E. (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol.130, 466476.
  • Fraser, C., Rider, L. and Chapple, C. (2005) An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiol.138, 11361148.
  • Fraser, C., Thompson, M., Shirley, A., Ralph, J., Schoenherr, J., Sinlapadech, T., Hall, M. and Chapple, C. (2007) Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol.144, 19861999.
  • Gigolashvili, T., Berger, B. and Flugge, U.I. (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem. Rev.8, 313.
  • Glover, J., Chapple, C., Rothwell, S., Tober, I. and Ellis, B. (1988) Allyglucosinolate biosynthesis in Brassica carinata. Phytochemistry, 27, 13451348.
  • Graser, G., Schneider, B., Oldham, N. and Gershenzon, J. (2000) The methionine chain elongation pathway in the biosynthesis of glucosinolates in Eruca sativa (Brassicaceae). Arch. Biochem. Biophys.378, 411419.
  • Graser, G., Oldham, N., Brown, P., Temp, U. and Gershenzon, J. (2001) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry, 57, 2332.
  • Hansen, B., Kliebenstein, D. and Halkier, B. (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J.50, 902910.
  • Haughn, G., Davin, L., Giblin, M. and Underhill, E. (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana– the glucosinolates. Plant Physiol.97, 217226.
  • Hemm, M.R., Ruegger, M.O. and Chapple, C. (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell. 15, 179194.
  • Hertweck, C., Jarvis, A., Xiang, L., Moore, B. and Oldham, N. (2001) A mechanism of benzoic acid biosynthesis in plants and bacteria that mirrors fatty acid β-oxidation. ChemBioChem, 2, 784786.
  • Hirai, M.Y. (2009) A robust omics-based approach for the identification of glucosinolate biosynthetic genes. Phytochem. Rev.8, 1523.
  • Hogge, L.R., Reed, D.W., Underhill, E.W. and Haughn, G.W. (1988) HPLC separation of glucosinolates from leaves and seeds of Arabidopsis thaliana and their identification using thermospray liquid chramatography/mass spectrometry. J. Chromatogr. Sci.26, 551556.
  • Hopkins, R., van Dam, N. and van Loon, J. (2009) Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol.54, 5783.
  • Ibdah, M. and Pichersky, E. (2009) Arabidopsis Chy1 null mutants are deficient in benzoic acid-containing glucosinolates in the seeds. Plant Biol.11, 574581.
  • Ibdah, M., Chen, Y., Wilkerson, C. and Pichersky, E. (2009) An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol.150, 416423.
  • Klempien, A., Kaminaga, Y., Qualley, A. et al. (2012) Contribution of CoA ligases to benzenoid biosynthesis in Petunia flowers. Plant Cell, 24, 20152030.
  • Kliebenstein, D., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J. and Mitchell-Olds, T. (2001a) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol.126, 811825.
  • Kliebenstein, D., Lambrix, V., Reichelt, M., Gershenzon, J. and Mitchell-Olds, T. (2001b) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell, 13, 681693.
  • Kliebenstein, D., D’Auria, J., Behere, A., Kim, J., Gunderson, K., Breen, J., Lee, G., Gershenzon, J., Last, R. and Jander, G. (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J.51, 10621076.
  • Lehfeldt, C., Shirley, A., Meyer, K., Ruegger, M., Cusumano, J., Viitanen, P., Strack, D. and Chapple, C. (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell, 12, 12951306.
  • Li, A. and Steffens, J. (2000) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc. Natl Acad. Sci. USA, 97, 69026907.
  • Li, J., Hansen, B., Ober, J., Kliebenstein, D. and Halkier, B. (2008) Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol.148, 17211733.
  • Lim, E.K., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J. and Bowles, D.J. (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem.277, 586592.
  • Meyer, K., Cusumano, J., Somerville, C. and Chapple, C. (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc. Natl Acad. Sci. USA, 93, 68696874.
  • Mock, H. and Strack, D. (1993) Energetics of the uridine 5′-diphosphoglucose-hydroxy-cinnamic acid acyl-glucosyltransferase reaction. Phytochemistry, 32, 575579.
  • Mugford, S., Qi, X., Bakht, S. et al. (2009) A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell, 21, 24732484.
  • Nair, R., Bastress, K., Ruegger, M., Denault, J. and Chapple, C. (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell, 16, 544554.
  • Nour-Eldin, H. and Halkier, B. (2009) Piecing together the transport pathway of aliphatic glucosinolates. Phytochem. Rev.8, 5367.
  • Obayashi, T. and Kinoshita, K. (2010) Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways. J. Plant. Res.123, 311319.
  • Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K. and Ohta, H. (2007) ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Res.35, D863D869.
  • Obayashi, T., Hayashi, S., Saeki, M., Ohta, H. and Kinoshita, K. (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res.37, D987D991.
  • Orlova, I., Marshall-Colon, A., Schnepp, J. et al. (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell, 18, 34583475.
  • Reichelt, M., Brown, P., Schneider, B., Oldham, N., Stauber, E., Tokuhisa, J., Kliebenstein, D., Mitchell-Olds, T. and Gershenzon, J. (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 59, 663671.
  • Ribnicky, D., Shulaev, V. and Raskin, I. (1998) Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiol.118, 565572.
  • Schnitzler, J., Madlung, J., Rose, A. and Seitz, H. (1992) Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell-cultures. Planta, 188, 594600.
  • Shirley, A. and Chapple, C. (2003) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. J. Biol. Chem.278, 1987019877.
  • Shirley, A., McMichael, C. and Chapple, C. (2001) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J.28, 8394.
  • Sinlapadech, T., Stout, J., Ruegger, M., Deak, M. and Chapple, C. (2007) The hyper-fluorescent trichome phenotype of the brt1 mutant of Arabidopsis is the result of a defect in a sinapic acid:UDPG glucosyltransferase. Plant J.49, 655668.
  • Sønderby, I., Geu-Flores, F. and Halkier, B. (2010) Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci.15, 283290.
  • St-Pierre, B. and De Luca, V. (2000) Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv. Phytochem.34, 285315.
  • Toufighi, K., Brady, S.M., Austin, R., Ly, E. and Provart, N.J. (2005) The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J.43, 153163.
  • Traka, M. and Mithen, R. (2009) Glucosinolates, isothiocyanates and human health. Phytochem. Rev.8, 269282.
  • Van Moerkercke, A., Schauvinhold, I., Pichersky, E., Haring, M. and Schuurink, R. (2009) A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J.60, 292302.
  • Walker, K., Long, R. and Croteau, R. (2002) The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc. Natl Acad. Sci. USA, 99, 91669171.
  • Weng, J.K., Akiyama, T., Ralph, J. and Chapple, C. (2011) Independent Recruitment of an O-Methyltransferase for Syringyl Lignin Biosynthesis in Selaginella moellendorffii. Plant Cell. 23, 27082724.